跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/28 08:12
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林桀克
研究生(外文):Chieh-Ke Lin
論文名稱:延伸型帕波式演算法於高斯白雜訊之收斂分析
論文名稱(外文):The Convergence Analysis of Extented Papoulis-Gerchberg Algorithm on Awgn-Smeared Signals
指導教授:許超雲許超雲引用關係
指導教授(外文):Chau-Yun Hsu
口試委員:許超雲
口試委員(外文):Chau-Yun Hsu
口試日期:2018-01-08
學位類別:碩士
校院名稱:大同大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:36
中文關鍵詞:可加性高斯白雜訊帕波式演算法訊號重建
外文關鍵詞:Additive white Gaussian noisesignal reconstructionPapoulis-Gerchberg algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討之主題在於運用更進一步改善的帕波式演算法(Papoulis-Gerchberg algorithm,PGA)對於重建被可加性高斯白雜訊(Additive white Gaussian noise,AWGN)汙染的訊號之收斂分析。本研究中提出的延伸型帕波式演算法(Extended Papoulis-Gerchberg algorithm,ePGA)在使用條件及已知資訊更加詳細的情況下,分析訊號重建之效果。由於傳統的帕波式演算法多用於理想的狀況下進行訊號還原,本研究將可加性高斯白雜訊加入訊號中,透過改變遺失訊號的初值,探討初值對訊號重建效能之影響,並運用延伸型帕波式演算法找出與原訊號不同之新收斂點,經由模擬實驗結果得知,新收斂點對原訊號亦呈現高斯分佈(Gaussian distribution),證明雜訊與新收斂點有關連性。
This is dedicated to analyzes the reconstruction efficiency of extented Papoulis-Gerchberg algorithm (ePGA) with more information and prior knowledge in signals. The traditional ePGA usually performs signal recovery under ideal situations. In this research, AWGN is added into signal for test. By changing the initial value of the missing signal, the effective of the initial value on the signal reconstruction efficiency is also discussed, meanwhile new convergence points through ePGA is explored. After the simulation, the distribution of new convergence points; in comparison to the original signal, found to be Gaussian. Besides, we also confirm the strong correlation between noise and new convergence point.
誌謝 II
摘要 IV
ABSTRACT VI
圖目錄 VIII
第壹章 緒論 1
1.1 研究背景與動機 1
1.2 研究目標 2
1.3 本文架構 2
第貳章 文獻探討與背景知識 3
2.1 帕波氏疊代演算法 3
2.2 帕波氏疊代演算法重建效能分析 5
第参章 雜訊訊號重建分析 7
3.1 延伸型帕波氏疊代演算法 7
3.1.1延伸型帕波氏演算法重建步驟 7
3.1.2 驗證ePGA收斂性 9
3.2 模擬訊號與參數設定 10
3.3 ePGA訊號重建效能 10
3.4 ePGA訊號重建分析 12
3.5 ePGA重建AWGN訊號分析 14
3.6 不同初值對訊號重建效能之分析 20
第肆章 新收斂點分析 24
4.1 新收斂點位置 24
4.2 新收斂點對原訊號之分布 28
第伍章 結論 32
參考文獻 34
[1] R.W.Gerchberg, “Super-resolution through error energy reduction,” Opt. Acta, vol. 21, no. 9, pp. 709–720, Sep. 1974.
[2] A. Papoulis, “A new algorithm in spectral analysis and band-limited extrapolation,” IEEE Trans. Circuits Syst., vol. 22, no. 9, pp. 735–742, Sep. 1975.
[3] J. Sanz and T. Huang, “Some aspects of band-limited signal extrapolation: models, discrete approximations, and noise,” IEEE Trans. Acoust., Speech, Signal Process., vol. 31, no. 6, pp.1492–1501, Dec. 1983.
[4] M. Jones, “The discrete Gerchberg algorithm,” IEEE Trans. Acoust., Speech, Signal Process., vol. 34, no. 3, pp. 624–626, Jun. 1986.
[5] P. J. S. G. Ferreira, “Interpolation and the discrete Papoulis-Gerchberg algorithm, ” IEEE Trans. Signal Process., vol. 42, no. 10, pp. 2596–2606, Oct. 1994.
[6] A. Papoulis, Signal Analysis. New York: McGraw-Hill, 1977.
[7] P.Chatterjee et al., “Application of Papoulis-Gerchberg method in image super-resolution and inpainting,” Comput. J., vol. 52, no. 1, pp. 80–89, Jan. 2009.
[8] E. Salari and G. Bao, “Super-resolution using an nhanced Papoulis-Gerchberg algorithm,” IET Image Process., vol. 6, no. 7, pp. 959–965, Oct. 2012.
[9] M. Sano et al., “Reconstruction of the field distribution on slot array antennas using the Gerchberg-Papoulis algorithm,” IEEE Trans. Antennas Propag., vol. 63, no. 8, pp. 3441–3451, Aug. 2015.
[10] H. D. Kjeldsen et al., “Near-field electromagnetic holography for high-resolution analysis of network interactions in neuronal tissue,” J. Neuroscience Methods, vol. 253, pp. 1–9, Sep. 2015.
[11] C. Chamzas and W. Xu, “An improved version of Papoulis-Gerchberg algorithm on band-limited extrapolation,” IEEE Trans. Acoust., Speech, Signal Process., vol. 32, no. 2, pp. 437–440, Apr. 1984.
[12] L.-C. Lin et al., “On the convergence of wavelet-based iterative signal extrapolation algorithms,” Signal Process., vol. 48, no. 1, pp. 51–65, Jan. 1996.
[13] B. G. Salomon and H. Ur, “Accelerated iterative band-limited extrapolation algorithms,” IEEE Signal Process. Lett., vol. 11, no. 11, pp. 871–874, Nov. 2004.
[14] C.-Y. Hsu and T.-M. Lo, “Signal reconstruction with boundary-matchingvia iterative algorithm,” IEICE Trans. Fundamentals Electron., ommun.,Comput. Sci., vol. E89-A, no. 11, pp. 3283–3289, Nov. 2006.
[15] W.-D. Chen, “A fast convergence algorithm for band- limited extrapolation by sampling,” IEEE Trans. Signal Process., vol. 57, no. 1, pp. 161–167, Jan. 2009.
[16] R.Marks, “Restoring lost samples from an oversampled band-limited Signal”, IEEE Trans. Acoust., Speech, Signal Process, vol. 31, no. 1, pp. 752–755, Jun. 1983.
[17] Roland T.Chin, “Restoration of Multichannel Microwave Radiometric Images”, IEEE Trans. Pattern Analysis, Machine Intelligence, vol. 7, no. 4, pp.475–484, Jul. 1985.
[18] Chia-Lung Yeh, “Error analysis of restoration algorithms”, IEEE Trans. Acoust., Speech, Signal Process, vol.33, no. 6, pp. 1593–1598, Dec. 1985.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top