跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/16 10:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:吳宗翰
研究生(外文):Wu, Tsung-Han
論文名稱:單次中強度有氧運動對老化高血壓大鼠之血管內皮功能的影響
論文名稱(外文):The Influence of Acute Moderate-intensity Aerobic Exercise on Endothelial Function in Aging Hypertensive Rats
指導教授:楊艾倫楊艾倫引用關係
指導教授(外文):Yang, Ai-Lun
口試日期:2018-05-25
學位類別:碩士
校院名稱:臺北市立大學
系所名稱:運動科學研究所
學門:民生學門
學類:運動科技學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:48
中文關鍵詞:急性運動老化高血壓血管功能抗氧化活性
外文關鍵詞:Acute exerciseVascular functionAgingHypertensionAntioxidant activity
相關次數:
  • 被引用被引用:0
  • 點閱點閱:115
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:1
背景和目的:現今社會已逐漸邁入高齡化,有研究指出隨年齡增
長,罹患高血壓的機率會提高,而高血壓易引起血管內皮功能障礙,
使一氧化氮生物利用率下降,且心血管功能亦隨年齡逐漸降低,進而
導致各種心血管疾病發生率增加。目前已知有氧運動可提升心血管功
能,並有效改善高血壓。然而有氧運動對於老化高血壓之影響尚未釐
清,故本研究欲進一步探討單次中強度有氧運動對於老化高血壓之血
管內皮功能的影響,並探究其生理機制。方法:本研究使用十二個月
大之雄性自發性高血壓大鼠 (spontaneously hypertensive rat, SHR)和
同週齡之正常血壓大鼠(Wistar-Kyoto rat, WKY),將其分為老化高血
壓急性運動組(SHR-12mo+AEX)、老化高血壓控制組(SHR-12mo)、
和老化正常血壓控制組(WKY-12mo),共分為三組。運動介入方式為
單次中強度有氧運動,給予跑步運動六十分鐘,速度維持21 m/min,
運動結束後,須立即取出其胸主動脈和血液進行後續分析;而控制組
則不進行運動介入。各組分別以組織浴系統評估其血管內皮功能,並
以酵素免疫分析法(ELISA)測量其血清一氧化氮(nitric oxide, NO)
含量,和氧化與抗氧化酵素活性等參數,包括超氧歧化酶(superoxide
dismutase, SOD)、過氧化氫酶(catalase, CAT)和脂質過氧化物
vi(malondialdehyde, MDA)等,最後再進行三組間統計分析和比較。
結果:本研究發現經過單次有氧運動後,SHR-12mo+AEX 組內皮依
賴性血管舒張反應顯著高於SHR-12mo 組(p < 0.05),但仍低於WKY-
12mo 組(p < 0.05);而於非內皮依賴性血管舒張反應方面,SHR-
12mo+AEX 組和SHR-12mo 組顯著低於WKY-12mo 組(p < 0.05)。
此外,於血清中NO 之含量,SHR-12mo 組顯著低於WKY-12mo 組
(p < 0.05),經單次運動後SHR-12mo+AEX 組則顯著高於SHR-12mo
組(p < 0.05)。另外SOD 和CAT 之活性分析方面,SHR-12mo+AEX
組皆顯著高於SHR-12mo 組(p < 0.05);而MDA 之含量分析,則是
SHR-12mo+AEX 組顯著低於SHR-12mo 組(p < 0.05)。結論:本研
究證實十二個月大之老化高血壓大鼠,經由單次中強度有氧運動介入
後,能有效改善老化高血壓之血管內皮功能調節,並提升血清中一氧
化氮含量及抗氧化活性。
Background and purpose: Nowadays, the society is gradually
entering the trend of aging. Previous studies have indicated that aging is
significantly associated with the prevalence of hypertension. Both aging
and hypertension have revealed endothelial dysfunction via the reduction
in nitric oxide bioavailability, and subsequently cardiovascular dysfunction
and disease. Aerobic exercise is well known in improving cardiovascular
function and lowering high blood pressure. However, the effects of aerobic
exercise on cardiovascular function have not yet been clarified in aging
hypertension. Therefore, the purpose of this study was to investigate the
effects of a single moderate-intensity aerobic exercise on endothelial
function in aging hypertension. Methods : Twelve-month-old male
spontaneously hypertensive rats (SHR) were randomly divided into two
groups: SHR receiving acute exercise (SHR-12mo+AEX) and SHR control
(SHR-12mo) groups. The age-matched Wistar-Kyoto rats (WKY-12mo)
were served as the normotensive control group. The SHR-12mo+AEX
group was intervened by a single bout of moderate-intensity of treadmill
running at 21 m/min for 60 min. At the end of experiments, the endothelial
function of thoracic aortas was evaluated by the organ bath system.
Moreover, the serum nitric oxide (NO), malondialdehyde (MDA), and
antioxidant activities, such as superoxide dismutase (SOD) and catalase
(CAT), were measured by the enzyme-linked immunosorbent assay
(ELISA). The results were statistically compared among three groups.
Results:After the acute aerobic exercise, the SHR-12mo+AEX group had
significantly (p < 0.05) higher endothelium-dependent vasorelaxation
compared with the SHR-12mo group. However, this vasorelaxation was
significantly (p < 0.05) lower than the WKY-12mo group. In addition, the
SHR-12mo+AEX and SHR-12mo groups had significantly (p < 0.05)
lower endothelium-independent vasorelaxation compared with the WKY-
12mo group. The serum NO concentration was significantly decreased in
the SHR-12mo group compared with the WKY-12mo group, but it was
significantly (p < 0.05) improved after the acute aerobic exercise. The
activities of SOD and CAT were significantly (p < 0.05) increased in the
SHR-12mo+AEX group compared with the SHR-12mo group. However,
the MDA concentration was significantly (p < 0.05) decreased in the SHR-
12mo+AEX group compared with the SHR-12mo group. Conclusion:
This study demonstrated that a single bout of moderate-intensity aerobic
exercise effectively improved endothelial function in aging hypertension.
It also enhanced the NO production and antioxidant activities.
學位論文授權書...................................................................................... ii
原創聲明書.............................................................................................. iii
學位考試審定書...................................................................................... iv
中文摘要................................................................................................ v
英文摘要.................................................................................................. vii
謝誌..........................................................................................................ix
目錄.........................................................................................................x
表目錄......................................................................................................xii
圖目錄.................................................................................................... xiii
第壹章 緒論........................................................................................ 1
第一節 研究背景.......................................................................... 1
第二節 研究目的.......................................................................... 2
第三節 研究問題........................................................................... 2
第四節 研究假設........................................................................... 2
第貳章 文獻探討................................................................................. 4
第一節 高血壓與心血管疾病…................................................... 4
第二節 老化、高血壓與內皮功能的關係.................................... 5
第三節 氧化壓力與心血管功能.................................................... 7
第四節 單次運動和心血管反應.................................................... 9
第參章 實驗方法.................................................................................. 11
第一節 實驗動物........................................................................... 11
第二節 休息時心率和血壓監測................................................... 11
第三節 單次運動介入方法........................................................... 12
第四節 血管舒張反應之測量....................................................... 12
第五節 一氧化氮含量分析........................................................... 16
第六節 脂質過氧化物和抗氧化活性分析................................... 16
第七節 統計分析........................................................................... 17
第肆章 研究結果................................................................................. 18
第一節 基本生理參數................................................................... 18
第二節 主動脈之血管之舒張反應................................................ 19
第三節 一氧化氮之含量分析....................................................... 20
第四節 抗氧化物酵素之活性分析................................................ 21
第五節 脂質過氧化物之含量分析............................................... 22
第伍章 討論與結論............................................................................. 23
參考文獻................................................................................................. 30

表目錄

表1 於運動介入前,十二個月大之正常血壓、高血壓與急性運動高
血壓大鼠基本生理參數……………………………………..…39


圖目錄

圖一、 十二個月大之老化高血壓急性運動組、老化高血壓控制組和
老化正常血壓控制組,累積劑量之乙醯膽鹼對於大鼠胸主動
脈血管調節之血管舒張反應曲線圖…………………………40
圖二、 十二個月大之老化高血壓急性運動組、老化高血壓控制組和
老化正常血壓控制組,累積劑量之乙醯膽鹼對於大鼠胸主動
脈血管去除內皮細胞調節之血管舒張反應曲線圖…………41
圖三、 十二個月大之老化高血壓急性運動組、老化高血壓控制組和
老化正常血壓控制組,累積劑量之硝普納對於大鼠胸主動脈
血管調節之血管舒張反應曲線圖……………………………42
圖四、 十二個月大之老化高血壓急性運動組、老化高血壓控制組和
老化正常血壓控制組,於L-NAMM抑制劑作用下,單一劑量
乙醯膽鹼對於大鼠胸主動脈血管調節之血管舒張反應……43
圖五、 十二個月大之老化高血壓急性運動組、老化高血壓控制組和
老化正常血壓控制組,於wortmannin抑制劑作用下,單一劑量
乙醯膽鹼對於大鼠胸主動脈血管調節之血管舒張反應……44
圖六、 十二個月大之老化高血壓急性運動組、老化高血壓控制組和
老化正常血壓控制組,一氧化氮 (Nitrate + Nitrite)之含量分
析………………………………………………………………45
圖七、 十二個月大之老化高血壓急性運動組、老化高血壓控制組和
老化正常血壓控制組,過氧化氫酵素之活性變化…………46
圖八、 十二個月大之老化高血壓急性運動組、老化高血壓控制組和
老化正常血壓控制組,超氧岐化酶之活性變化……………47
圖九、 十二個月大之老化高血壓急性運動組、老化高血壓控制組和
老化正常血壓控制組,脂質過氧化物之含量變化…………48
Andersen, J. K. (2004). Oxidative stress in neurodegeneration: cause or consequence? Nat Med, 10 Suppl, S18-25. doi:10.1038/nrn1434
Bonetti, P. O. (2002). Endothelial dysfunction: a marker of atherosclerotic risk. Arteriosclerosis, Thrombosis, and Vascular Biology, 23(2), 168-175. doi:10.1161/01.atv.0000051384.43104.fc
Brandes, R. P., Fleming, I., & Busse, R. (2005). Endothelial aging.
Cardiovasc Res, 66(2), 286-294.doi:10.1016/j.cardiores.2004.12.027
doi:10.1016/j.cardiores.2004.12.027
Ceriello, A. (2008). Possible role of oxidative stress in the pathogenesis of hypertension. Diabetes Care, 31 Suppl 2, S181-184. doi:10.2337/dc08-s245
Christofaro, D. G. D., Casonatto, J., Vanderlei, L. C. M., Cucato, G. G., & Dias, R. M. R. (2017). Relationship between resting heart rate, blood pressure and pulse pressure in adolescents. Arq Bras Cardiol, 108(5), 405-410. doi:10.5935/abc.20170050
NCD Risk Factor Collaboration (2017). Worldwide trends in blood pressure from 1975 to 2015: a pooled analysis of 1479 population-based measurement studies with 19.1 million participants. Lancet, 389(10064), 37-55. doi:10.1016/S0140-6736(16)31919-5
Coote, J. H., & Sato, Y. (1977). Reflex regulation of sympathetic activity in the spontaneously hyperterensive rat. American Heart Association.
Currie, K. D., Thomas, S. G., & Goodman, J. M. (2009). Effects of short-term endurance exercise training on vascular function in young males. Eur J Appl Physiol, 107(2), 211-218. doi:10.1007/s00421-009-1116-4
Doo, H., Chun, H., & Doo, M. (2016). Associations of daily sleep duration and dietary macronutrient consumption with obesity and dyslipidemia in Koreans: A cross-sectional study. Medicine (Baltimore), 95(45), e5360. doi:10.1097/MD.0000000000005360
Dorian V. Ziegler, Christopher D. Wiley, & Velarde, M. C. (2014). Mitochondrial effectors of cellular senescence beyond the freeradical theory of aging. Aging Cellpublished by the Anatomical Society and John Wiley & Sons Ltd.
El Assar, M., Angulo, J., & Rodriguez-Manas, L. (2013). Oxidative stress and vascular inflammation in aging. Free Radic Biol Med, 65, 380-401. doi:10.1016/j.freeradbiomed.2013.07.003
Faria, T. O., Angeli, J. K., Mello, L. G. M., Pinto, G. C., Stefanon, I., Vassallo, D. V., & Lizardo, J. H. F. (2017). A single resistance exercise session improves aortic endothelial function in hypertensive rats. Arq Bras Cardiol, 108(3), 228-236. doi:10.5935/abc.20170023
Fernandes, T., Gomes-Gatto, C. V., Pereira, N. P., Alayafi, Y. R., das Neves, V. J., & Oliveira, E. M. (2017). NO signaling in the cardiovascular system and exercise. Adv Exp Med Biol, 1000, 211-245. doi:10.1007/978-981-10-4304-8_13
Fleg, J. L., & Strait, J. (2012). Age-associated changes in cardiovascular structure and function: a fertile milieu for future disease. Heart Fail Rev, 17(4-5), 545-554. doi:10.1007/s10741-011-9270-2
Fukai, T., & Ushio-Fukai, M. (2011). Superoxide dismutases: role in redox signaling, vascular function, and diseases. Antioxid Redox Signal, 15(6), 1583-1606. doi:10.1089/ars.2011.3999
Goto, C., Higashi, Y., Kimura, M., Noma, K., Hara, K., Nakagawa, K., Nara, I. (2003). Effect of different intensities of exercise on endothelium-dependent vasodilation in humans: role of endothelium-dependent nitric oxide and oxidative stress. Circulation, 108(5), 530-535. doi:10.1161/01.CIR.0000080893.55729.28
Goto, C., Nishioka, K., Umemura, T., Jitsuiki, D., Sakagutchi, A., Kawamura, M., Higashi, Y. (2007). Acute moderate-intensity exercise induces vasodilation through an increase in nitric oxide bioavailiability in humans. Am J Hypertens, 20(8), 825-830. doi:10.1016/j.amjhyper.2007.02.014
Graham, D. A., & Rush, J. W. (2004). Exercise training improves aortic endothelium-dependent vasorelaxation and. J. Appl. Physiol. 96: 2088-2096.
Haigis, M. C., & Yankner, B. A. (2010). The aging stress response. Mol Cell, 40(2), 333-344. doi:10.1016/j.molcel.2010.10.002
Higashi, Y., Kihara, Y., & Noma, K. (2012). Endothelial dysfunction and hypertension in aging. Hypertens Res, 35(11), 1039-1047. doi:10.1038/hr.2012.138
Higashi Y, S. S., Kurisu S, Yoshimizu A, Sasaki N, Matsuura H, Kajiyama G, Oshima T. (1999). Regular aerobic exercise augments endothelium-dependent vascular relaxation in normotensive as well as hypertensive subjects. American Heart Association. doi: https://doi.org/10.1161/01.CIR.100.11.1194
Higashi, Y., & Yoshizumi, M. (2004). Exercise and endothelial function: role of endothelium-derived nitric oxide and oxidative stress in healthy subjects and hypertensive patients. Pharmacol Ther, 102(1), 87-96. doi:10.1016/j.pharmthera.2004.02.003
Hornig, B., Maier, V., & Drexler, H. (1996). Physical training improves endothelial function in patients with chronic heart failure. Circulation, 93(2), 210-214. doi:10.1161/01.cir.93.2.210
Hsiun-ing Chen, I.-P. C., Chauying J. Jen. (1996). Exercise training
  Increases. Biomedical Science.10.1152 / jappl.1992.73.6.2209
Ji, L. L. (2002). Exercise-induced modulation of antioxidant defense. Ann N Y Acad Sci, 959, 82-92.
Johann Bauersachs, Anne Bouloumie´, Alexander Mu¨ lsch, Gabriele Wiemer, Ingrid Fleming, & Rudi Busse. (1997). Vasodilator dysfunction in aged spontaneously hypertensive rats changes in NO synthase III and soluble guanylyl cyclase expression, and in superoxide anion production. Cardiovascular Research 37 Ž1998. 772–779.
Kim HK, Hwang CL, Yoo JK, Hwang MH, Handberg EM, Petersen JW, DD, C. (2017). All-extremity exercise training improves arterial stiffness in older adults. MEDICINE & SCIENCE IN SPORTS & EXERCISE. doi:10.1249/MSS.0000000000001229
Kloß, S., Bouloumie, A., & Mulsch, A. (2000). Aging and chronic hypertension decrease expression of rat aortic soluble guanylyl Cyclase. Hypertension. 2000;35:43-47. doi:https://doi.org/10.1161/01.HYP.35.1.43
Lakatta, E. G. (2003). Arterial and cardiac aging: major shareholders in cardiovascular disease enterprises: Part I: aging arteries: A "Set Up" for vascular disease. Circulation, 107(1), 139-146. doi:10.1161/01.cir.0000048892.83521.58
Laughlin, M. H., & McAllister, R. M. (1992). Exercise training-induced. J. Appl. Physiol. 73: 2209-2225.
Maritim, A. C., Sanders, R. A., & Watkins, J. B., 3rd. (2003). Diabetes, oxidative stress, and antioxidants: a review. J Biochem Mol Toxicol, 17(1), 24-38. doi:10.1002/jbt.10058
Mudau, M., Genis, A., Lochner, A., & Strijdom, H. (2012). Endothelial dysfunction: the early predictor of atherosclerosis. Cardiovasc J Afr, 23(4), 222-231. doi:10.5830/CVJA-2011-068
Muller, J., Wilms, M., & Oberhoffer, R. (2015). Acute effects of submaximal endurance training on arterial stiffness in healthy middle- and long-distance runners. J Clin Hypertens (Greenwich), 17(5), 371-374. doi:10.1111/jch.12530
Nieman, D., Dew, D., & Krasen, P. (2013). Gender difference in the acute influence of a 2-hour run on arterial stiffness in trained runners. Res Sports Med, 21(1), 66-77. doi:10.1080/15438627.2012.738445
Organization, W. H., Federation, W. H., & Organization, W. S. (2011). Global Atlas on cardiovascular disease prevention and control (S. Mendis, P. Puska, & B. Norrving Eds.).
Paravicini, T. M., & Touyz, R. M. (2006). Redox signaling in hypertension. Cardiovasc Res, 71(2), 247-258. doi:10.1016/j.cardiores.2006.05.001
Park, K. H., & Park, W. J. (2015). Endothelial dysfunction: clinical implications in cardiovascular disease and therapeutic approaches. J Korean Med Sci, 30(9), 1213-1225. doi:10.3346/jkms.2015.30.9.1213
Patil, S. G., Dhanakshirur, G. B., Aithala, M. R., Naregal, G., & Das, K. K. (2014). Effect of yoga on oxidative stress in elderly with grade-I hypertension: a randomized controlled study. J Clin Diagn Res, 8(7), BC04-07. doi:10.7860/JCDR/2014/9498.4586
Ray, P. D., Huang, B. W., & Tsuji, Y. (2012). Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal, 24(5), 981-990. doi:10.1016/j.cellsig.2012.01.008
Rodrigo, H Prat, W Passalacqua, J Araya, C Guichard, & Bachler, J. (2007). Relationship between oxidative stress. hypertens Res. doi:10.1291 / hypres.30.1159
Santos-Parker, J. R., LaRocca, T. J., & Seals, D. R. (2014). Aerobic exercise and other healthy lifestyle factors that influence vascular aging. Adv Physiol Educ, 38(4), 296-307. doi:10.1152/advan.00088.2014
Schieber, M., & Chandel, N. S. (2014). ROS function in redox signaling and oxidative stress. Curr Biol, 24(10), R453-462. doi:10.1016/j.cub.2014.03.034
Schulz, E., Gori, T., & Munzel, T. (2011). Oxidative stress and endothelial dysfunction in hypertension. Hypertens Res, 34(6), 665-673. doi:10.1038/hr.2011.39
Scridon, A., Gallet, C., Arisha, M. M., Orea, V., Chapuis, B., Li, N., Chevalier, P. (2012). Unprovoked atrial tachyarrhythmias in aging spontaneously hypertensive rats: the role of the autonomic nervous system. Am J Physiol Heart Circ Physiol, 303(3), H386-392. doi:10.1152/ajpheart.00004.2012
Seals, D. R., Jablonski, K. L., & Donato, A. J. (2011). Aging and vascular endothelial function in humans. Clin Sci (Lond), 120(9), 357-375. doi:10.1042/CS20100476
Sinha, N., & Dabla, P. (2015). Oxidative stress and antioxidants in hypertension-a current review. Curr Hypertens Rev. 2015; 11 (2): 132-42.
Siscovick, D. S., Weiss, N. S., Fletcher, R. H., & Lasky, T. (1984). The incidence of primary cardiac arrest during vigorous exercise. N Engl J Med, 311(14), 874-877. doi:10.1056/NEJM198410043111402
Soenen, S., & Chapman, I. M. (2013). Body weight, anorexia, and undernutrition in older people. J Am Med Dir Assoc, 14(9), 642-648. doi:10.1016/j.jamda.2013.02.004
Sun MW, Q. F., Wang J, Tao T, Guo J, Wang L, Lu AY, Chen H. (2008). Low-intensity voluntary running lowers blood. Hypertens Res. doi: 10.1291/hypres.31.543
Tanaka, L. Y., Bechara, L. R., dos Santos, A. M., Jordao, C. P., de Sousa, L. G., Bartholomeu, T., Ramires, P. R. (2015). Exercise improves endothelial function: a local analysis of production of nitric oxide and reactive oxygen species. Nitric Oxide, 45, 7-14. doi:10.1016/j.niox.2015.01.003
Tousoulis, D., Simopoulou, C., Papageorgiou, N., Oikonomou, E., Hatzis, G., Siasos, G., Stefanadis, C. (2014). Endothelial dysfunction in conduit arteries and in microcirculation. Novel therapeutic approaches.PharmacolTher,144(3),253-267. doi:10.1016/j.pharmthera.2014.06.003
Touyz, R. M. (2004). Reactive oxygen species, vascular oxidative stress, and redox signaling in hypertension: what is the clinical significance? Hypertension,44(3),248-252. doi:10.1161/01.HYP.0000138070.47616.9d
Trachootham, D., Alexandre, J., & Huang, P. (2009). Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat Rev Drug Discov, 8(7), 579-591. doi:10.1038/nrd2803
Whelton, P. K., Carey, R. M., Aronow, W. S., Casey, D. E., Collins, K. J., Himmelfarb, C. D., Jones, D. W. (2017). Guideline for the prevention, detection, evaluation, and management of high blood pressure in Adults: a report of the american college of cardiology/american heart association task force on clinical practice guidelines. J Am Coll Cardiol.
doi:10.1161 / HYP.0000000000000065
Wu, Y., Tai, E. S., Heng, D., Tan, C. E., Low, L. P., & Lee, J. (2009). Risk factors associated with hypertension awareness, treatment, and control in a multi-ethnic asian population. Journal of Hypertension, 27(1), 190-197. doi:10.1097/HJH.0b013e328317c8c3
Yang, A. L., Su C. T., Lin, K. L., & Lee, S. D. (2008). Enhancement of vascular function mediated by insulin and insulin-like growth factor-1 following single exercise Session. Chinese Journal of Physiology 51(2): 71-77.
Yavuzer, H., Yavuzer, S., Cengiz, M., Erman, H., Doventas, A., Balci, H., Uzun, H. (2016). Biomarkers of lipid peroxidation related to hypertension in aging. Hypertension Research, 39, 342. doi:10.1038/hr.2015.156
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊