跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/08 02:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:柯鈞瀚
研究生(外文):Chun-Han Ko
論文名稱:防波堤整合震盪水柱式波能擷取裝置之水動力效能研究
論文名稱(外文):Study on Hydrodynamic Performance of a Breakwater-Integrated Oscillating Water Column Wave Energy Converter
指導教授:蔡清標蔡清標引用關係
指導教授(外文):Ching-Piao Tsai
口試委員:蕭士俊林呈謝志敏陳文俊
口試委員(外文):Shih-Chun HsiaoCheng LinChih-Min HsiehWen-Juinn Chen
口試日期:2019-01-29
學位類別:博士
校院名稱:國立中興大學
系所名稱:土木工程學系所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:108
中文關鍵詞:再生能源波浪能波浪能擷取裝置震盪水柱防波堤計算流體力學
外文關鍵詞:renewable energywave energywave energy converteroscillating water columnbreakwaterCFD
相關次數:
  • 被引用被引用:0
  • 點閱點閱:523
  • 評分評分:
  • 下載下載:43
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在針對新型防波堤整合震盪水柱式波能擷取裝置之水動力以及空氣動力特性進行探討。此新型防波堤結合震盪水柱式波能擷取裝置係由Tsai (2016)提出,該裝置於傳統震盪水柱式波能擷取裝置前方加裝一孔隙牆,以抵抗暴風波浪來臨時所受之波浪力,並同時增加波浪能量之擷取效率。本研究同時利用數值模式以及物理實驗進行,數值模式利用Flow-3D計算流體力學軟體進行模擬,該模式應用FAVOR技術搭配三維空間建模,可有效的模擬孔隙牆的結構。由於震盪水柱式波能擷取裝置的運作包含了水及空氣間的能量轉換,因此利用二相流體(two-fluids)進行模擬。且考量到全尺度下高速的氣流可能產生壓縮性,可壓縮流(compressible flow)的模式也一併考量。本文引用了文獻之數值、實驗資料進行流場特性之驗證,以確保網格及紊流模式的適用性。並與物理實驗進行流場、氣場、氣能輸出特性以及裝置體所受之波浪力進行驗證。本文主要之研究結果以全尺度之模擬進行,探討流場特性、幾何結構之影響以及受波力之情形。
研究結果顯示,波能量擷取的高峰發生於震盪水柱震盪過程中經過平均水位的時刻。且當氣室內產生負壓時,氣體會由氣孔被吸入裝置體;氣室內為正壓時,則會將氣體擠出至外界,是為推動風渦輪機的機制。透過流場的特性分析,發現前板開口處附近會產生較大的速度及渦流,說明前板之幾何型態會影響水體進出艙室。由氣場分布則可以觀察到氣體進出氣室時呈現一集中於氣室中央的柱狀氣流。本文分別針對各幾何結構進行優化,其中包括了內外艙室寬度之比例、前版之開口高度、氣室開孔之面積比以及前孔隙牆之孔隙率。結果發現各項結構都具有最佳之幾何配置,在適當的波浪條件下,可達到約84%的擷取效率。藉由探討新型防波堤整合震盪水柱式波能擷取裝置之幾何影響過程中,發現震盪水柱的艙室寬度越寬,其共振頻率也會隨之上升。且前版之開口高度則在0.6倍水深時,有最佳的擷取效率。氣室開孔越小,所產生的流速及壓力差皆越大,但因總流量降低,使氣室開孔面積之最佳比例為0.7 %的氣室面積。此外,前孔隙牆會影響反射率以及紊流能量消散,其開孔率則在25 %時有最佳的擷取效率。本研究另外針對典型裝置進行艙室之幾何影響評估,發現前版開口高度以及氣室開孔面積之結果皆與新型裝置體相同,分別為0.6倍水深以及0.7 %的氣室面積。將新型及典型裝置體進行比較,發現新型防波堤整合震盪水柱式波能擷取裝置不僅可以提高波能量之擷取效率,還能降低前版所受之波浪力。
This study is aimed to investigate the hydrodynamic and aerodynamic performances of an innovative breakwater-integrated oscillating water column (OWC) wave energy converter. This innovative OWC device consists of an extra perforated wall in front of the typical OWC chamber, which can be integrated with a caisson breakwater for capturing efficiently the wave power. The characteristics of the flow behavior in the OWC chamber and the effect of structural geometry on the hydrodynamic efficiency of the device are investigated by adopting both numerical simulations and laboratory experiments. The CFD numerical model for solving this air-water and wave-structure interaction problems is based on the three-dimensional RANS equations and the RNG -ε turbulent closure model, from which the numerical simulations is implemented by the Flow-3D software. The numerical model is first validated by using previous PIV experimental results for a typical OWC chamber and the present experiments for the innovative OWC device. Then the numerical simulations considering full scale OWC model are implemented for exploring the water and air flow characteristics and the geometric effect on the hydrodynamic performance parameters, including the water column surface elevation, the differential air pressure in the chamber, the airflow rate through the orifice and the pneumatic power.
Based on the numerical simulations and experimental investigation, it is found that the larger velocity of water flow and the corresponding vortices always occur near the lip of the front submerged wall, and the airflow forms a conical shape due to the circular orifice on the roof centre of chamber. The maximum positive and negative differential air pressures in the chamber occur at the instant as the mean water level of the oscillating water column commences upward and downward, respectively. The positive and negative differential air pressure inside the chamber induce the air to extrude and suck through the orifice.
The effects of the chamber geometry including the chamber breadth, the open height of front submerged wall, the orifice size and porosity of the front perforated wall are discussed by simulations considering full scale model of the present OWC device. It is found that the following remarkable effects. (i) The maximum pneumatic efficiency could reach to about 84% under the resonant frequency condition and the optimized geometry. (ii) The resonant frequency condition decreases with the increase of the breadth of the OWC chamber. (iii) The smaller and larger entrances of the open submerged wall could not produce higher pneumatic power, which the optimum value is found as 0.6 times of the water depth. (iv) The smaller orifice area might induce the larger the airflow velocity across the orifice and the larger differential air pressure in the chamber, however it does not produce the larger the pneumatic power due to the lower airflow rate. The max hydrodynamic efficiency happened as the orifice area ratio is 0.7%. (v) The front perforated wall could influents the wave reflection coefficient and the dissipation of turbulent kinetic energy, and reaches the max hydrodynamic efficiency when the porosity is 25%. Finally, by the comparisons the hydrodynamic performance between present and typical OWC, it shows that the present OWC device has better performance for pneumatic power extraction and less wave pressure on the front submerged wall.
致謝 i
摘要 ii
Abstract iii
Contents v
List of Figures viii
List of Tables xiii
List of Notations xiv
Chapter 1 Introduction 1
1.1 Background 1
1.2 Development of OWC devices 2
1.2.1 Fixed-structure OWCs 3
1.2.2 Breakwater-integrated OWCs 8
1.2.3 Floating-structure OWCs 11
1.3 Literature reviews 14
1.4 Objective of this thesis 17
1.5 Configuration of the present OWC device 18
1.6 Contents of this thesis 20
Chapter 2 Numerical Model 22
2.1 Formulations 22
2.1.1 Governing equations 22
2.1.2 Turbulent model 23
2.1.3 Volume of Fluid (VOF) method 24
2.1.4 FAVOR technique 25
2.1.5 Boundary conditions 26
2.2 Computational mesh set-up 29
Chapter 3 Experiments 31
3.1 Experimental set-up 31
3.2 Measuring instruments 35
3.3 Experimental conditions 39
Chapter 4 Model Validations 41
4.1 Hydrodynamic performance parameters 41
4.2 Validations with previous studies of typical OWC device 42
4.2.1 Sensitivity of computational meshes 44
4.2.2 Comparisons of flow field 48
4.2.3 Comparisons of hydrodynamic performance 51
4.3 Validations with present experiments of breakwater-integrated OWC 52
4.3.1 Comparisons of wave profiles 54
4.3.2 Comparisons of hydrodynamic performance 55
4.3.3 Comparisons of flow pattern 57
4.3.4 Comparisons of wave pressure 60
Chapter 5 Numerical Simulations for Full-Scale Device 63
5.1 Computational conditions 63
5.2 Flow behaviors 65
5.3 Effects of geometry on hydrodynamic efficiency 72
5.4 Comparisons between present and typical OWC device 85
5.4.1 Comparisons of hydrodynamic performance 87
5.4.2 Comparisons of flow patterns 89
5.4.3 Comparisons of wave pressure 92
Chapter 6 Conclusions 95
6.1 Conclusions 95
6.2 Suggestion for future works 97
Appendix: Setting of Flow-3D in this study 99
References 100
[1]Arena F, Romolo A, Malara G, Ascanelli A. On design and building of a UOWC wave energy converter in the Mediterranean sea. In: Proceedings of the 32nd International Conference on Ocean, Offshore and Arctic Engineering. Nantes, France: 2013.
[2]Boccotti P. Caisson breakwaters embodying an OWC with a small opening. Part I: theory. Ocean Engineering 2007; 806-819.
[3]Boccotti P, Filianoti P, Fiamma V, Arena F. Caisson breakwaters embodying an OWC with a small opening—Part II: a small-scale field experiment. Ocean Engineering 2007; 820-841.
[4]Chen YL, Hsiao SC. Numerical modeling of a buoyant round jet under regular waves. Ocean Engineering 2018; 161: 154-167.
[5]Chiu YF, Su CH, Tseng HM. Oceanographically Observation Data—Annual Report 2013 (Taichung Harbor); Report No. MOTC-IOT-103-H2DA001e-H3; Institute of Transportation, Ministry of Transportation and Communications: Taipei, Taiwan, 2013.
[6]Choi BH, Kim DC, Pelinovsky E, Woo SB. Three-dimensional simulation of tsunami run-up around conical island. Coast Engineering 2007; 54: 618–629.
[7]Delauré YMC, Lewis A. 3D hydrodynamic modelling of fixed oscillating water column wave power plant by a boundary element method. Ocean Engineering 2003; 30: 309–330.
[8]EI Marhani A, Castro Ruiz F, Rodriguez MA, Parra Santos MT. Numerical modeling in wave energy conversion systems. Energy 2008; 33: 1246–1253.
[9]Elhanafi A, Fleming A, Macfarlane G, Leong Z. Numerical energy balance analysis for an onshore oscillating water column wave energy converter. Energy 2016; 116: 539-557.
[10]Elhanafi A, Macfarlane G, Fleming A, Leong Z. Scaling and air compressibility effects on a three-dimensional offshore stationary OWC wave energy converter. Applied Energy 2017; 189: 1–20.
[11]Elhanafi A, Macfarlane G, Ning D. Hydrodynamic performance of single–chamber and dual–chamber offshore–stationary oscillating water column devices using CFD. Applied Energy 2018; 228: 82-96.
[12]Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current status, future prospects and their enabling technology. Renewable and Sustainable Energy Reviews 2014; 39: 748–764.
[13]Evans D. The oscillating water column wave-energy device. IMA Journal of Applied Mathematics 1978; 22: 423-433.
[14]Evans DV, Porter R. Hydrodynamic characteristics of an oscillating water column device. Applied Ocean Research 1995; 17: 155-64.
[15]Falcão AFO. Wave energy utilization: a review of the technologies. Renewable and Sustainable Energy Reviews 2010; 14: 899–918.
[16]Falcão AFO, Henriques JCC. Oscillating-water-column wave energy converters and air turbines: a review. Renewable Energy 2016; 85, 1391-1424.
[17]Falcão AFO. Modelling of Wave Energy Conversion. Instituto Superior Tecnico, Universidade de Lisboa: 2017.
[18]Fleming A, Penesis I, Goldsworthy L, Macfarlane G, Bose N, Denniss T. Phase averaged flow analysis in an oscillating water column wave energy converter. Journal of Offshore Mechanics and Arctic Engineering 2013; 135: 021901.
[19]Fleming A, Penesis I, Macfarlane G, Bose N, Denniss T. Energy balance analysis for an oscillating water column wave energy converter. Ocean Engineering 2012; 54: 26-33.
[20]García E, Otros y. Recursos y sistemas energéticos renovables del entorno marino y sus requerimientos de control. Revista Iberoamericana de Automática e Informática Industrial 2016; 13: 141-161.
[21]Graw KU, Schimmels S, Lengricht J. Quantifying losses around the lip of an OWC by use of particle image velocimetry (PIV). LACER-Leipzig annual civil engineering report, Aalborg, Denmark, 2000. 243-250.
[22]He F, Huang Z, Law AWK. An experimental study of a floating breakwater with asymmetric pneumatic chambers for wave energy extraction. Applied Energy 2013; 106: 222–231.
[23]He F, Huang ZH. Hydrodynamic performance of pile-supported OWC-type structures as breakwaters: an experimental study. Ocean Engineering 2014; 88: 618-626.
[24]Hirt CW, Nichols BD. Volume of fluid (VOF) method for dynamics of free boundaries. Journal of Computational Physics 1981; 39: 201–225.
[25]Hirt CW. Volume-fraction techniques: powerful tools for wind engineering. Computational Wind Engineering 1993; 327-338.
[26]Hong KY, Shin SH, Hong DC, Choi HS, Hong SW. Effects of shape parameters of OWC chamber in wave energy absorption. In: Proceeding of 17th international offshore and polar engineering conference Lisbon, Portugal; 2007. 428-433.
[27]Hotta H, Miyazaki T, Washio Y, Ishii S. On the performance of the wave power device Kaimei—the results on the open sea tests. In: Proceedings of the seventh international conference on offshore mechanics and arctic engineering, Houston, TX, USA; 1988; 1: 91-96.
[28]IEA-OES. 2006 Annual Report on Ocean Energy Systems. 2006.
[29]IEA-OES. 2011 Annual Report. 2011
[30]Institute of Transportation, Ministry of Transportation and Communications. Oceanographically Observation Data—Annual Report 2013 (Taichung Harbor). Taipei, Taiwan: 2013.
[31]Iturrioz A, Guanche R, Armesto JA, Alves MA, Vidal C, Losada IJ. Time-domain modeling of a fixed detached oscillating water column towards a floating multi-chamber device. Ocean Engineering 2014; 76: 65–74.
[32]Iturrioz A, Guanche R, Lara JL, Vidal C, Losada IJ. Validation of OpenFOAM® for oscillating water column three-dimensional modeling Ocean Engineering 2015; 107: 222-236.
[33]Kamath A, Bihs H, Arntsen ØA. Numerical investigations of the hydrodynamics of an oscillating water column device. Ocean Engineering 2015; 102: 40–50.
[34]Ko CH, Tsai CP, Chen YC, Sihombing TO. Numerical simulations of wave and flow variations between submerged breakwaters and slope seawall. In: Proceeding of The 25th International Offshore and Polar Engineering Conference , Hawaii, USA; 2015; 1448-1453.
[35]Ko CH, Tsai CP, Chuang CY, Chen YC. Numerical simulations of wave and flow variations between submerged breakwaters and slope seawall. In: Proceeding of The 27th International Offshore and Polar Engineering Conference, San Francisco, California, USA; 2017; 670-674.
[36]Kuo YS, Chung CY, Hsiao SC, Wang YK. Hydrodynamic characteristics of oscillating water column caisson breakwaters. Renewable Energy 2017; 103: 439–447.
[37]Le Mehaute B. Similitude in Coastal Engineering. Journal of Waterway 1976; 102: 317-335.
[38]Lindroth S, Leijon M. Offshore wave power measurements - a review. Renewable and Sustainable Energy Reviews 2011;15: 4274-4285.
[39]Liu C. A tunable resonant oscillating water column wave energy converter. Ocean Engineering 2016; 82-89.
[40]Liu Z, Hyun BS, Hong KY. Application of numerical wave tank to OWC air chamber for wave energy conversion. In: Proceedings of the 18th International Offshore and Polar Engineering Conference, Vancouver, BC, Canada; 2008; 156-162.
[41]López I, Castro A, Iglesias G. Hydrodynamic performance of an oscillating water column wave energy converter by means of particle imaging velocimetry. Energy 2015; 83: 89-103.
[42]López I, Pereiras B, Castro F, Iglesias G. Optimization of turbine-induced damping for an OWC wave energy converter using a RANS-VOF numerical model. Applied Energy 2014; 127: 105–114.
[43]López I, Andreu J, Ceballos S, Alegria IMD, Kortabarria I. Review of wave energy technologies and the necessary power-equipment. Renewable and Sustainable Energy Reviews 2013; 27: 413-434.
[44]Lovas S, Mei CC, Liu Y. Oscillating water column at a coastal corner for wave power extraction. Applied Ocean Research 2010; 32: 267-283.
[45]Martins-Rivas H, Mei CC. Wave power extraction from an oscillating water column at the tip of a breakwater. Journal of Fluid Mechanics 2008; 626: 395-414.
[46]Martins-Rivas H, Mei CC. Wave power extraction from an oscillating water column along a straight coast. Ocean Engineering 2009; 36: 426–433.
[47]Masuda Y, McCormick ME. Experiences in pneumatic wave energy conversion in Japan, in: M.E. McCormick, Y.C. Kim (Eds.), Utilization of Ocean Waves e Wave to Energy Conversion, American Society of Civil Engineers. 1986; 1-33.
[48]Masuda Y, Yamazaki T, Outa Y, McCormick M. The backward bent duct buoy-an improved floating type wave power device. In: Proceedings Oceans '88 a partnership of marine interests; 1988. 1067-1072.
[49]Masuda Y. Experimental full scale result of wave power machine KAIMEI. In: Proceedings of the first symposium on wave energy utilization; Gothenburg, Sweden. 1979. 349-362.
[50]Mei C C. Hydrodynamic principles of wave power extraction. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 2012; 370: 208-234.
[51]Morrison IG. The hydrodynamic performance of an oscillating water column wave energy converter [dissertation]. Ph. D. thesis 1995.
[52]Morris-Thomas TM, Irvin RJ, Thiagarajan KP. An investigation into the hydrodynamic efficiency of an oscillating water column. Journal of Offshore Mechanics and Arctic Engineering 2007; 129: 273–278.
[53]Munson BR, Okiishi TH, Huebsh WW, Rothmayer AP. Fluid Mechanics, 7th edition John Wiley & Sons Singapore Pte Ltd.: Singapore; 2013.
[54]Ning DZ, Shi J, Zou QP, Teng B. Investigation of hydrodynamic performance of an OWC wave energy device using a fully nonlinear HOBEM. Energy 2015; 83: 177–188.
[55]Ning DZ, Wang RQ, Chang CW. Numerical simulation of a dual-chamber oscillating water column wave energy converter. Sustainability 2017; 9: 1599.
[56]Ning DZ, Wang RQ, Zou QP, Teng B. An experimental investigation of hydrodynamics of a fixed OWC wave energy converter. Applied Energy 2016; 168: 636-648.
[57]Ohneda H, Igarashi S, Shinbo O, Sekihara S, Suzuki K, Kubota H. Construction procedure of a wave power extracting caisson breakwater. In: Proceedings of the 3rd Symposium on Ocean Wave Energy Utilization, Tokyo, Japan, 22–23 January; 1991; 171-179.
[58]Pontes MT, Falcão AFO. Oceans energies: recourses and utilization. In: Proceedings of the 18th world energy conference, Buenos Aires; 2001.
[59]Ravindran M, Koola PM. Energy from sea waves e the Indian wave energy program. Current Science 1991; 676-680.
[60]Rienecker MM, Fenton JD. A Fourier approximation method for steady water waves. Journal of Fluid Mechanics 1981; 104: 119–137.
[61]Sarmento AJNA, Falcão AFO. Wave generation by an oscillating surfacepressure and its application in wave-energy extraction. Journal of Fluid Mechanics 1985; 150; 467-485.
[62]Sarmento AJNA. Wave flume experiments on two dimensional oscillating water column wave energy devices. Experiments in Fluids 1992; 12: 286-292.
[63]Setoguchi T, Takao M. Current status of self-rectifying air turbines for wave energy conversion. Energy Conversion and Management 2006; 2382-2396.
[64]Simonetti I, Cappietti L, El Safti H, Oumeraci H. Numerical Modelling of Fixed Oscillating Water Column Wave Energy Conversion Devices: Toward Geometry Hydraulic Optimization. In: Proceeding of International Conference on Offshore Mechanics and Arctic Engineering, 9: Ocean Renewable Energy. 2015.
[65]Simonetti I. Optimization of oscillating water column wave energy converters - a numerical study [dissertation]. University of Braunschweig and Florence; 2016.
[66]Simonetti I, Cappietti L, El Safti H, Oumeraci H. Optimization of the geometry and the turbine induced damping for fixed detached and asymmetric owc devices: a numerical study. Energy 2017; 139: 1197-1209.
[67]Speziale CG, Thangam S. Analysis of an RNG based turbulence model for separated flows. NASA CR-189600, ICASE Report 1992; 92-3.
[68]Suzuki M, Arakawa C, Takahashi S. Performance of wave power generating system installed in breakwater at Sakata port in Japan. In: Proceedings of the 14th International Offshore and Polar Engineering Conference; Toulon (France). 2004.
[69]Teixeira PR, Davyt DP, Didier E, Ramalhais R. Numerical simulation of an oscillating water column device using a code based on navier–stokes equations. Energy 2013; 61: 513-530.
[70]Torre-Enciso Y, Ortubia I, de Aguileta López LI, Marques J. Mutriku wave power plant: From the thinking out to the reality. In: Proceedings of the 8th European Wave Tidal Energy Conference; 2009 September 7–10 Uppsala, Sweden. 2009.
[71]Torres FR, Teixeira PRF, Didier E. Study of the turbine power output of an oscillating water column device by using a hydrodynamic-aerodynamic coupled model. Ocean Engineering 2016; 125: 147-154.
[72]Tsai CP, Chen YC, Chen CJ, Lin C. Simulation of the effect of breakwater on the propagation of solitary waves. Journal of Marine Science and Technology 2016; 24: 780–789.
[73]Tsai CP, Chen YC, Sihombing TO, Lin C. Simulations of moving effect of coastal vegetation on tsunami damping. Natural Hazards and Earth System Sciences 2017; 17: 693–702.
[74]Tsai CP, Ko CH, Chen YC. Investigation on Performance of a Modified Breakwater-Integrated OWC Wave Energy Converter. Sustainability 2018; 10: 643.
[75]Tsai CP. inventors; Wave energy captured device and wave energy convert power system. Intellectual Property Office, Ministry of Economics, Taiwan, 2016; Patent No. I515362. 2016 Jan 1.
[76]Tseng RS, Wu RH, Huang CC. Model study of a shoreline wave-power system. Ocean Engineering 2000; 27: 801-821.
[77]Yakhot V, Orszag SA, Thangam S, Gatski TB, Speziale CG. Development of turbulence models for shear flows by a double expansion technique. Physics of Fluids 1992; 4: 1510-1520.
[78]Yakhot V, Orszag SA. Renormalization group analysis of turbulence, I. Basic theory. Journal of Scientific Computing 1986; 1: 3-51.
[79]Wang DJ, Katory M, Li YS. Analytical and experimental investigation on the hydrodynamic performance of onshore wave-power devices. Ocean Engineering 2002; 29: 871–885.
[80]Zhang Dh, Li W, Lin YG. Wave energy in China: current status and perspectives. Renewable Energy 2009; 34: 2089-2092.
[81]Zhang Y, Zou QP, Greaves D. Air-water two phase flow modeling of hydrodynamic performance of an oscillating water column device. Renewable Energy 2012; 41: 159-170.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊