跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/05 10:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張智勝
研究生(外文):Chih-ShengChang
論文名稱:淡水河口水動力研究
論文名稱(外文):Improvement on the Understandings of Hydrodynamics in Tamsui River
指導教授:陳佳琳陳佳琳引用關係
指導教授(外文):Jia-Lin Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:淡水河水動力參數圖混合分層浮球
外文關鍵詞:hydrodynamic characteristicsTamsui RiverGPS driftersEstuarine Parameter Space analysis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:21
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在了解潮汐型河口的水動力特性並以淡水福祿數(Fresh Water Froude Number)與混合參數(Mixing Parameter)來判定與探討淡水河口之水動力及水質交換等特性。淡水福祿數隨著流速增高而變大,但隨著河口深度增加而變小。混合參數則隨潮流流速振幅增減,但隨著河口深度和潮汐頻率增加而變小。有別於以往使用流速計或是流速剖面儀來測量流速的方法,本研究使用浮球(內部具有GPS定位系統且浮在海面上與海流同步)測量流速,在淡水河口附近使用此系統得到一系列漲退潮的資料再加以分析,並搭配數值模式了解淡水河口之流場概況。其中第二次浮球實驗的流量超過當年之年平均,且當年之年平均值比前幾年的平均值高出一倍。根據實驗,在河口地區的流速約為1.3~1.5m/s,河水流量對河口地區流速影響不大,且河水在出海口處轉向時的流速皆降至0.5m/s。根據水文年報提供之流量及浮球實驗,本研究指出在大潮時候淡水河口可以達到充分混合的條件,而小潮時則表現部分混合的特性,並可推斷淡水河口有較強的潮汐混合能力,且在相同的上游淡水流量情況下漲潮時海水與淡水充分混合,而退潮時海水與淡水則會產生分層現象。
This research aims to understand the hydrodynamic characteristics in tide-driven estuaries. We use the Fresh Water Froude Number and Mixing Parameter to determine and discuss the characteristics of hydrodynamics and water quality in Tamsui estuary. The Fresh Water Froude Number becomes larger as the flow rate increases but smaller as the depth of river mouth increases. The Mixing Parameter changes according to the amplitude of the depth-averaged tide velocity, but becomes smaller when the depth of river mouth and the tidal frequency increases. Different from using flow meter or ADCP, this research uses the GPS drifters, which can synchronize with the ocean current to measure the flow rate. We gain a series of experimental data during flood and ebb tides in Tamsui River mouth for data analysis, so we can understand the overview of the flow field in Tamsui River mouth. In the observation part, the discharge during the second time of experiment exceeded the yearly averaged discharge. According to the experiments, the flow velocity at the river mouth is approximately 1.3~1.5m/s. The influence of discharge to the flow velocity was not obvious. Also, the flow velocity of the river descends to 0.5m/s while drifters turning to other direction near the river mouth. By combining the discharge data provided by the Hydrological year book and the GPS drifter observation, we learned that the freshwater and seawater can be fully mixed during spring tide. Yet during neap tides, they were partially mixed. Therefore, we can summarize that Tamsui River estuary has a better tidal mixing ability. Our observations also indicate that, in the general discharge situation, seawater and freshwater are fully mixed during flood and the estuarine water again becomes more stratified during ebb.
摘要 i
Extended Abstract ii
誌謝 viii
表目錄 xi
圖目錄 xii
符號目錄 xv
第一章 緒論 1
1.1 研究動機 1
1.2 河口類型介紹 1
1.3 淡水河地域介紹 3
1.4 前人研究 4
1.5 本文架構 8
第二章 研究方法 10
2.1 水文調查 11
2.1.1 研究場址—淡水河水位流量測站 11
2.1.2 流量分析 13
2.1.2.1 春季(3~5月) 13
2.1.2.2 夏季(6~9月) 15
2.1.2.3 冬季(10~2月) 19
2.1.3 雨量分析 21
2.1.3.1 春季(3~5月) 22
2.1.3.2 夏季(6~9月) 24
2.1.3.3 冬季(10~2月) 26
2.2 浮球觀測 27
2.2.1 浮球測量原理 28
2.2.2 觀測流程 30
2.2.3 浮球測量範圍與時間 31
2.3 參數圖分析 32
2.3.1 淡水福祿數 Frƒ (fresh water Froude number) 34
2.3.2 混合參數(Mixing parameter) 35
2.4 模式概論 35
第三章 結果與討論 41
3.1 水文調查分析結果 41
3.1.1 極端水文事件說明 41
3.1.2 水文資料分析小結 43
3.2 河口潮流觀測結果 52
3.2.1 第一次觀測 53
3.2.2 第二次觀測 56
3.2.3 河口段流速分析 59
3.3 參數圖分析結果 61
3.3.1 參數計算 61
3.3.2 參數圖分析 67
3.4 模式結果 67
3.4.1 地形水深資料 68
3.4.2 模式網格建構與內差計算 70
3.4.3 模式模擬結果 71
第四章 結論與建議 80
4.1 結論 80
4.2 建議 81
參考文獻 82
1.江允智、蕭松山、方惠民、謝宜辰(2008)。淡水河口南岸至臺北港北防坡堤間短期海岸地形變遷數值模擬。第30屆海洋工程研討會論文集。
2.交通部中央氣象局,潮汐表,中華民國105年。https://www.cwb.gov.tw/V7/service/notice/download/publish_20151002092938.pdf
3.林哲震(2007)。淡水河口水舌擺盪動力機制之研究。國立中央大學水文科學研究所碩士論文。
4.林聖烈(2006)。淡水河口環流與淡水舌之研究。國立中央大學水文科學研究所碩士論文。
5.林曉武(2001)。淡水河系底泥重金屬之沉降通量與垂直變化。行政院環保署底泥重金屬之調查及管制策略研析期末報告。EPA-90-U1G1-02-105。
6.柳文成、許銘熙、李俊賢(2006)。河口與近岸三維懸浮泥砂傳輸之發展與現場調查研究(I)。行政院國家科學委員會專題研究計畫精簡報告。
7.陳沛蓉(2014)。淡水河河口之水理特性及地形演變分析。國立中央大學土木工程學系碩士論文。
8.張君名、方惠民、蕭松山、李亭葦(2015)。粒子追蹤模式應用於水河口海域流場之分析。第37屆海洋工程研討會論文集。
9.張裕弦、劉景毅(2015)。淡水河口輸砂與地形變千模擬研究。第37屆海洋工程研討會論文集。
10.溫志中、張君名、賴進松、林永峻、李忻芸(2015)。淡水河流量對河口地形變遷影響研究。第37屆海洋工程研討會論文集。
11.經濟部水利署。水文年報http://gweb.wra.gov.tw/wrhygis/
12.錢樺、王仲豪、鄭皓元、張志強、陳佳琳、張智勝(2018)。聯網技術與河川表面流速觀測之應用。臺灣農田水利期刊「接受」。
13.蘇聖芳(2006)。淡水河口潮流垂直結構與分層之效應。國立中山大學海洋物理研究所碩士論文。
14.Booij, N., Ris, R. C., Holthuijsen, L. H. (1999), A third‐generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res., 108, 7649-7666.
15.Dean, R. G., Dalrymple, R. A. (1991). Water Wave Mechanics for Engineers and Scientists. Advanced Series on Ocean Engineering, 2, 368.
16.Geyer, W. R., and MacCready, P. (2014). The Estuarine Circulation. Annu. Rev. Fluid Mech., 46, 175-97.
17.Geyer, W. R., and Ralston, D. K. (2015). Estuarine Frontogenesis. JOURNAL OF PHYSICAL OCEANOGRAPHY, 45, 546-561, doi:10.1175/JPO-D-14-0082.1.
18.Gottlieb, S., Shu, C. W., and Tadmore, E. (2001), Strong stability-preserving high-order time discretization methods. SIAM Review, 43(1), 89-112.
19.Huang, J. C., Lee, T. Y., Lin, T. C., Hein, T., Lee, L. C., Shih, Y. T. & Lin, N. H. (2016). Effects of different N sources on riverine DIN export and retention in a subtropical high-standing island, Taiwan. Biogeosciences, 13(6), 1787-1800.
20.Lacy, J. R. , Stacey, M. T. , Burau, J. R. , Monismith, S. G. (2003). Interaction of lateral baroclinic forcing and turbulence in an estuary. J. Geophys. Res., 108, 3089; doi:10.1029/2002JC001392.
21.Liu, W. C., Chen, W. B., Cheng, R. T., Hsu, M. H., Kuo, A. Y. (2007). Modeling the influence of river discharge on salt intrusion and residual circulation in Danshuei River estuary, Taiwan. Continental Shelf Research, 27, 900–921
22.Longuet-Higgins, M. S., Stewart, R. W. (1964). Radiation stresses in water waves; a physical discussion, with applications. Deep Sea Research and Oceanographic Abstracts, 11 (4), 529-562.
23.MacCready, P. and Geyer, W. R. (2010). Advances in Estuarine Physics. Annu. Rev. Mar. Sci., 2, 35-58.
24.Putrevu, U., and Svendsen, I. A. (1999). Three-dimensional dispersion of momentum in wave-induced nearshore currents. Eur. J. of Mech. B/Fluids, 18(3), 409-427.
25.Ralston, D. K., Geyer, W. R., and Lerczak J. A. (2010). Structure, variability, and salt flux in a strongly forced salt wedge estuary. Journal of geophysical research, 115, C06005, doi:10.1029/2009JC005806.
26.Ralston, D. K., Geyer, W. R., Lerczak, J. A. (2008). Subtidal salinity and velocity in the Hudson River estuary: observations and modeling. J. Phys. Oceanogr, 28, 753–70.
27.Shi, F., Kirby J. T., Hsu, T. J., Chen. J. L., and Ryan. M. (2013). NearCoM-TVD A Hybrid TVD Solver for the nearshore community model documentation and user’s manual. No. CACR-13-06
28.Shi, F., Sun, W., and Wei, G. (1997). A WDM method on generalized curvilinear grid for calculation of storm surge flooding. Applied Ocean Research, 19(5-6), 275-282.
29.Shi, F., Svendsen, I. A., Kirby, J.T., and Smith, J. M. (2003). A curvilinear version of a Quasi-3D nearshore circulation model. Coastal Engineering, 49(1-2), 99-124.
30.Shi, F., Sun, W. (1995). A variable boundary model of storm surge flooding in generalized curvilinear grids. International Journal for Numerical Methods in Fluids, 21(8), 642-651.
31.Shi, F., Kirby, J. T., Harris, J. C., Geiman, J. D., and Grilli, S. T. (2012). A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation. Ocean Modelling, 43-44, 36-51, doi:10.1016/j.ocemod.2011.12.004.
32.Shi, F., Kirby, J. T., Tehranirad, B. and Harris, J. C. (2011). FUNWAVE-TVD, user’s manual and benchmark tests. Center for Applied Coastal Research Report, No. CACR 2011-04, University of Delaware, Newark, Delaware.
33.Simpson, J. E., and Linden, P. F. (1989). Frontogenesis in a fluid with horizontal density gradients. J. Fluid Mech., 202, 1–16, doi:10.1017/S0022112089001072.
34.Simpson, J. H., and Nunes, R. A. (1981). The tidal intrusion front: An estuarine convergence zone. Estuarine Coastal Shelf Sci., 13, 257–266, doi:10.1016/S0302-3524(81)80024-2.
35.Svendsen, I. A., and Putrevu, U. (1990). Nearshore circulation with 3-D profiles. Coastal Engineering Proceedings, 22, doi:10.9753/icce.v22.%25p.
36.Stacey M. T., and Ralston, D. K. (2005). The scaling and structure of the estuarine bottom boundary layer. J. Phys. Oceanogr., 35, 55–71.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top