跳到主要內容

臺灣博碩士論文加值系統

(44.220.251.236) 您好!臺灣時間:2024/10/05 10:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游雅晴
研究生(外文):Ya-CingYou
論文名稱:浮動式光達平台穩定度實驗及生物附著對繫纜張力之影響
論文名稱(外文):Stability Test of Floating LiDar Platform and Effect of Marine Growth on Mooring Line Tension
指導教授:陳佳琳陳佳琳引用關係
指導教授(外文):Jia-Lin Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:水利及海洋工程學系
學門:工程學門
學類:河海工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:56
中文關鍵詞:離岸風能浮動式平台光達生物附著平台穩定度
外文關鍵詞:Offshore wind energyfloating platformLiDarmarine growthstability of platform
相關次數:
  • 被引用被引用:0
  • 點閱點閱:117
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
近年來,為降低因火力發電產生的二氧化碳及減少核能產生的核廢料,對於綠色能源的需求日漸增加,除了太陽能之外,亦致力於風力發電,從陸上發展至離岸,目前於淺水處採用固定式基座,未來往深水處發展,於深水採用固定式基座的話,水下結構增加成本相對提高,且未來風機巨大化的趨勢,為評估深水的風能資源,使用浮動式光達為較具經濟效益的選擇。
本研究的研究重點在於浮動式平台的穩定度與繫纜系統的張力變化,藉由實驗以分析其運動變化,並以實驗之Heave及Surge位移時序列輸入至Orcaflex數值模式建立模型,分析在生物附著後張力之差異。
本文之實驗模型為DeepCwind OC4半潛式浮體平台以福祿數1:6.4之縮尺,在實驗中,分別有不規則波及規則波各四種不同波浪條件,陀螺儀收錄六軸加速度及角度,張力計收錄造波時繫纜的張力變化,為使平台穩定性增加,與金屬工業研究中心合作設計運動補償雲台,為分析雲台的效用,改變其活動度,比較補償機制開啟前後的平台穩定性。
在平台側面安裝LED燈,以攝影機錄製影像,進行影像分析,分析出的X軸(Surge)及Z軸(Heave)位移為數值的輸入檔,以規則波之數據進行比較以建立模型,進而改變繫纜的內外徑與單位長度重量,模擬生物生長時的張力變化,比較生物附著前後繫纜斷裂力的差別,探討生物附著於繫纜設計的重要性。
In order to reduce carbon dioxide that produce from the thermal power generation and nuclear waste, the requirement of green energy is increasing. Besides solar energy, offshore wind energy development is rapidly growing in Taiwan.. As onshore wind energy technology advances, we will begin to exploit the offshore wind farm. At present, the developers usually used the fixed foundation at nearshore site. To exploit the deeper water and cooperate the large-scale of wind turbine has become the future trend. If we also use the piling to construct the met mast, the cost will be increased. In order to evaluate the wind resource at deep water, using floating LiDar is a more economic choice. This research focuses on the stability of floating platform and the effect of marine growth on mooring line tension. Experimental tests in a large water flume were conducted at National Cheng Kung University, Tainan Hydraulics Laboratory (THL). The model applies the Froude Number to a 1:6.4 scaled semi-submersible platform. There are four different wave conditions, including regular wave and the irregular waves. We use the gyroscope and tension sensor to record data. Then, we design the motion compensation device, cooperate with Metal Industries Research and Development Center(MIRDC), to increase stability of platform. The LED was set on the side of platform and camera was used to record the video. The recorded images were analyzed by Matlab to obtain the displacement of platform, which is the input data for numerical model. We also explore the mooring line geometry by changing the diameter and weight of mooring line. The results are used to compare the tension after marine growth on the mooring line.
摘要................................i
Extended Abstract...................ii
誌謝.................................vii
表目錄................................x
圖目錄.................................xi
第一章 緒論...........................1
1.1 研究動機.......................1
1.2 文獻回顧.......................2
1.2.1 離岸風能產業目前政策及趨勢.......2
1.2.2 離岸風能評估...................4
1.2.3 浮動式光達及載台形式............8
1.2.4 生物附著之影響.................11
1.2.5 運動補償機制...................12
1.3 本文目標及架構.................12
第二章 研究方法......................14
2.1 實驗與儀器設備.................14
2.2 實驗配置與模型縮尺.............16
2.2.1 實驗配置過程..................16
2.2.2 模型縮尺.....................17
2.2.3 運動補償雲台之設計............19
2.3 數值模型介紹與設定............22
2.3.1 Orcina OrcaFlex模塊介紹......22
2.3.2 Orcaflex繫纜模型.............23
2.3.3 參數設定.....................24
第三章 實驗結果.....................27
3.1 實驗條件.....................27
3.2 實驗可用之組數................28
3.3 平台穩定性測試................28
3.4 繫纜張力分析..................33
3.5 加設補償雲台的影響.............35
第四章 數值結果......................40
4.1 拉力測試......................40
4.2 無生物附著的張力比較...........41
4.3 生物附著後張力值的變化.........45
4.3.1 均勻生長......................45
4.3.2 不均勻生長....................48
第五章 結論與建議....................52
5.1 結論.........................52
5.2 未來展望與建議................54
參考文獻..............................55
1.(API), A. P. I. (2015). Design and Analysis of Stationkeeping Systems for Floating Structures.
2.Cool, G. (2016). Floating LiDAR Technology: Oceanographic parameters influencing accuracy of wind vector reconstruction.
3.DNV, G. (2014). DNV-RP-C205: Environmental conditions and environmental loads. DNV GL, Oslo, Norway.
4.Du, Y., et al. (2015). A novel underwater measurement method for mooring system using self-contained technique. Advances in Mechanical Engineering 7(5): 1687814015585973.
5.Gottschall, J., et al. (2017). Floating lidar as an advanced offshore wind speed measurement technique: Current technology status and gap analysis in regard to full maturity. Wiley Interdisciplinary Reviews: Energy and Environment 6(5): e250.
6.Gottschall, J., et al. (2017). Floating lidar as an advanced offshore wind speed measurement technique: current technology status and gap analysis in regard to full maturity. Wiley Interdisciplinary Reviews: Energy and Environment 6(5).
7.Manual, O. (2012). Online at http://www. orcina. com/SoftwareProducts/OrcaFlex/Documentation. OrcaFlex. pdf.
8.Moncus, J. D. and J. H. Miller Jr (2005). Motion compensation system and method, Google Patents.
9.NORSOK (2007). N-003 Actions and action effects 2nd Edition.
10.Pedersen, T. F., et al. (2006). ACCUWIND-Classification of five cup anemometers according to IEC 61400-12-1.
11.RP2A-WSD, A. (2000). Recommended practice for planning, designing and constructing fixed offshore platforms–working stress design–. Twenty-.
12.Spraul, C., et al. (2017). Effect of marine growth on floating wind turbines mooring lines responses. Congrès français de mécanique, AFM, Association Française de Mécanique.
13.trust, C. (2013). Carbon Trust Offshore Wind Accelerator roadmap for the commercial acceptance of floating LIDAR technology.
14.Wolken-Möhlmann, G., et al. (2011). Simulation of motion induced measurement errors for wind measurements using LIDAR on floating platforms. Fraunhofer IWES, Am Seedeich 45(27): 572.
15.工研院 (2017). 浮體式離岸風電技術發展現況與未來展望.
16.唐宏結, et al. (2018). Hywind和DeepCwind兩種浮動式風機基座及其錨碇系統動力特性比較. 海洋工程研討會. 國立高雄海洋科技大學.
17.張上君, et al. (2014). 離岸風場海氣象觀測塔之規劃與設計技術, 台灣世曦工程顧問股份有限公司.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top