|
[1]L. Peppoloni, F. Brizzi, C. Avizzano and E. Ruffaldi, “Immersive ros-integrated framework for robot teleoperation, in Proceedings of Symposium on 3D User Interfaces, pp. 177-178, 2015. [2]A. Billard, S. Calinon, R. Dillmann and S. Schaal, “Robot programming by demonstration, in Springer Handbook of Robotics, pp. 1371-1394, 2008. [3]K. S. Fu, R. C. Gonzalez and C. S. G. Lee, “Robotics: control, sensing, vision, and intelligence, New York: Mc Graw-Hill, 1987. [4]D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez and Y. Chen, “Mastering the game of go without human knowledge, Nature, vol. 550, no. 7676, pp. 354-359, 2017. [5]V. Mnih, A. P. Badia, M. Mirza, A. Graves, T. Lillicrap, T. Harley and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning, in Proceedings of International Conference on Machine Learning, pp. 1928-1937, 2016. [6]H. Van Hasselt, A. Guez and D. Silver, “Deep reinforcement learning with double q-learning, in Proceedings of AAAI Conference on Artificial Intelligence, 2016. [7]C. Schou, J. S. Damgaard, S. Bøgh, and O. Madsen, “Human-robot interface for instructing industrial tasks using kinesthetic teaching, in Proceedings of International Symposium on Robotics, pp. 1-6, 2013. [8]Y. Ou, J. Hu, Z. Wang, Y. Fu, X. Wu and X. Li, “A real-time human imitation system using Kinect, International Journal of Social Robotics, vol. 7, no. 5, pp. 587-600, 2015. [9]M. Alibeigi, S. Rabiee and M. Ahmadabadi, “Inverse kinematics based human mimicking system using skeletal tracking technology, Journal of Intelligent and Robotic Systems, vol. 85, no. 1, pp. 27-45, 2016. [10]J. Lei, M. Song, Z. N. Li and C. Chen, “Whole-body humanoid robot imitation with pose similarity evaluation, Signal Processing, vol. 108, pp. 136-146, 2015. [11]M. Zhang, J. Chen, X. Wei and D. Zhang, “Work chain‐based inverse kinematics of robot to imitate human motion with Kinect, ETRI Journal, vol. 40, no. 4, pp. 511-521, 2018. [12]P. Liang, L. Ge, Y. Liu, L. Zhao, R. Li and K. Wang, “An augmented discrete-time approach for human-robot collaboration, Discrete Dynamics in Nature and Society, vol. 2016, Article ID 9126056, http://dx.doi.org/10.1155/2016/9126056, 2016. [13]L. Zhao, Y. Liu, K. Wang, P. Liang and R. Li, “An intuitive human robot interface for tele-operation, in Proceedings of IEEE International Conference on Real-time Computing and Robotics, pp. 454-459, 2016. [14]Yang, C., Luo, J., Pan, Y., et al, “Personalized variable gain control with tremor attenuation for robot teleoperation, IEEE Transactions on Systems, Man, and Cybernetics: Systems, vol. 99, pp. 1-12, 2017. [15]Chih-Yen Chen, “Board learning system based gaze and gesture classification for telerobotics interface, M.S. thesis, Dept. Elect. Eng., National Cheng Kung Univ., Tainan, Taiwan, 2018. [16]J. Kofman, X. Wu, T. J. Luu and S. Verma, “Teleoperation of a robot manipulator using a vision-based human-robot interface, IEEE Transactions on Industrial Electronics, vol. 52, no. 5, p.p.1206-1219., 2005. [17]V. Mnih, , A. P. Badia, , M. Mirza, A. Graves, T. Lillicrap, T. Harley and K. Kavukcuoglu, “Asynchronous methods for deep reinforcement learning, in Proceedings of International Conference on Machine Learning, pp. 1928-1937, June, 2016 [18]Y. Yuan, Z. Li, T. Zhao and D. Gan, “DMP-based motion generation for a walking exoskeleton robot using reinforcement learning, IEEE Transactions on Industrial Electronics (Early Access), DOI: 10.1109/TIE.2019.2916396, 2019. [19]S. Calinon, F. Guenter and A. Billard, “On learning, representing, and generalizing a task in a humanoid robot, IEEE Transactions on Systems, Man, and Cybernetics, Part B, vol. 37, no. 2, pp. 286-298, 2007. [20]M. J. Zeestraten, I. Havoutis, J. Silvério, S. Calinon and D. G. Caldwell, “An approach for imitation learning on riemannian manifolds, IEEE Robotics and Automation Letters, vol. 2 no. 3, pp. 1240-1247, 2017. [21]R. Elbasiony and W. Gomaa, “Humanoids skill learning based on real-time human motion imitation using kinect, Intelligent Service Robotics, vol. 11, no.2, pp.149-169, 2018. [22]A. C. Dometios, Y. Zhou, X. S. Papageorgiou, C. S. Tzafestas and T. Asfour, “Vision-based online adaptation of motion primitives to dynamic surfaces: application to an interactive robotic wiping task, IEEE Robotics and Automation Letters, vol. 3, no.3, pp.1410-1417, 2018. [23]S. Ren, K. He, R. Girshick and J. Sun, “Faster R-CNN: towards real-time object detection with region proposal networks. in Proceedings of Advances in Neural Information Processing Systems Conference, pp. 91-99, 2015. [24]C. Szegedy, S. Ioffe, V. Vanhoucke and A. A. Alemi, “Inception-v4, Inception-resnet and the Impact of Residual Connections on Learning, in Proceedings of AAAI Conference on Artificial Intelligence, pp. 4078-4284, 2017. [25]V. R. Konda and J. N. Tsitsiklis, “Actor-Critic algorithms, in Proceedings of Advances in Neural Information Processing Systems Conference, pp. 1008-1014, 2000. [26]C. J. Watkins and P. Dayan, “Q-learning, Machine Learning, vol. 8, no. 3-4, pp. 279-292, 1992. [27]V. Mnih, , K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G. Bellemare and S. Petersen, “Human-level control through deep reinforcement learning, Nature, vol. 518, no. 7540, pp. 529, 2015. [28]S. Gu, T. Lillicrap, I. Sutskever and S. Levine, , “Continuous deep q-learning with model-based acceleration, in Proceedings of International Conference on Machine Learning, pp. 2829-2838, June, 2016. [29]T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y Tassa and D. Wierstra, “Continuous control with deep reinforcement learning, arXiv: 1509.02971, 2015. [30]A. Y. Ng, D. Harada and S. Russell, “Policy invariance under reward transformations: theory and application to reward shaping, in Proceedings of International Conference on Machine Learning, vol. 99, pp. 278-287, 1999. [31]D. Dewey, “Reinforcement learning and the reward engineering principle, in Proceedings of AAAI Spring Symposium Series, pp. 13-16, 2014. [32]G. Lample and D. S. Chaplot, “Playing FPS games with deep reinforcement learning, in Proceedings of AAAI Conference on Artificial Intelligence, pp.2140-2146, 2017. [33]T. D. Kulkarni, K. Narasimhan, A. Saeedi and J. Tenenbaum, “Hierarchical deep reinforcement learning: integrating temporal abstraction and intrinsic motivation, in Advances in Neural Information Processing Systems, pp. 3675-3683, 2016. [34]X. B. Peng, G. Berseth, K. Yin and M. Van De Panne, “Deeploco: dynamic locomotion skills using hierarchical deep reinforcement learning, ACM Transactions on Graphics, vol. 36, no. 4, pp.41, 2017. [35]Y. Wu and Y. Tian, “Training agent for first-person shooter game with actor-critic curriculum learning, in Proceedings of International Conference on Learning Representations, 2017. [36]C. Florensa, D. Held, M. Wulfmeier, M. Zhang and P. Abbeel, “Reverse curriculum generation for reinforcement learning, arXiv:1707.05300, 2017. [37]M. Andrychowicz, F. Wolski, A. Ray, J. Schneider, R. Fong, P. Welinder and W. Zaremba, “Hindsight experience replay, in Proceedings of Advances in Neural Information Processing Systems Conference, pp. 5048-5058, 2017. [38]CMU-Perceptual-Computing-Lab. [Online] Available: https://github.com/CMU-Perceptual-Computing-Lab/openpose [39]Z. Cao, G. Hidalgo, T. Simon, S. E. Wei and Y. Sheikh, “Openpose: realtime multi-person 2d pose estimation using part affinity fields, arXiv:1812.08008, 2018. [40]MPU-9250. [Online] Available:https://www.invensense.com/products/motion-tracking/9-axis/mpu-9250/ [41]Intel RealSense D435i. [Online] Available: https://www.intelrealsense.com/depth-camera-d435i/. [42]W. K. Nicholson, “Linear algebra with applications, McGraw-Hill Ryerson, 2006, pp.424-433. [43]L. E. Spence, A. J. Insel and S. H. Friedberg, “Elementary linear algebra: a matrix approach, Pearson College Div, 2017. [44]S. Madgwick, “An efficient orientation filter for inertial and inertial/magnetic sensor arrays, Report x-io and University of Bristol (UK), vol.25, pp.113-118, 2010. [45]Geomagnetism Data. [Online] Available: https://www.usgs.gov/natural-hazards/geomagnetism [46]Rviz. [Online] Available: http://wiki.ros.org/rviz. [47]Robot Operating System. [Online] Available: https://www.ros.org/. [48]D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller, “Deterministic policy gradient algorithms, in Proceedings of International Conference on Machine Learning, 2014. [49]T. Tieleman and G Hinton, “Lecture 6.5-rmsprop: Divide the Gradient by a Running Average of Its Recent Magnitude, COURSERA: Neural Networks for Machine Learning, vo. 4, no. 2, pp. 26-31, 2012. [50]P. I. Corke, “A simple and systematic approach to assigning denavit–hartenberg parameters, IEEE Transactions on Robotics, vol. 23, no. 3, pp. 590-594, 2007. [51]D-H convention rules. [Online] Available: https://blog.robotiq.com/how-to-calculate-a-robots-forward-kinematics-in-5-easy-steps. [52]Robotis motors. [Online] Available: http://en.robotis.com/. [53]T. Schaul, D Horgan, K. Gregor and D. Silver, “Universal value function approximators, in Proceedings of International Conference on Machine Learning, pp. 1312-1320, 2015. [54]Arduino uno. [Online] Available: https://store.arduino.cc/usa/arduino-uno-rev3 [55]Florensa, C., Held, D., Wulfmeier, M., Zhang, et al, “Reverse curriculum generation for reinforcement learning, arXiv:1707.05300, 2017.
|