跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 09:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:潘思辰
研究生(外文):Si-ChenPan
論文名稱:應用於抑制光學檢測系統振動之主動平台設計與控制
論文名稱(外文):Design and Control of an Active Stage for Suppressing Motion Induced Vibration in Optical Inspection Systems
指導教授:陳國聲
指導教授(外文):Kuo-Shen Chen
學位類別:碩士
校院名稱:國立成功大學
系所名稱:機械工程學系
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:198
中文關鍵詞:主動平台橡膠軸承撓性結構振動抑制影像檢測
外文關鍵詞:Active stageRubber bearingFlexible structureVibration suppressionImage verification
相關次數:
  • 被引用被引用:3
  • 點閱點閱:136
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近年來隨著智慧製造產業的發展,加工和檢測的方式已從傳統人工操作到自動化產線完成,其精度也從毫米等級往微奈米等級進步,在有足夠定位精度需求的自動化高速運動任務中,快速定位和振動抑制技術起著至關重要的作用。一個典型的例子如自動化光學檢測(AOI)機台,由於固有的結構剛性和快速運動期間產生的慣性力,對於點對點運動而言殘余振動將不可避免,這意味著需要更多的等待時間來避免模糊的圖像,而搭載一額外的精密平台搭配控制系統,能有效提升機台的振動抑制能力,從而提升檢測效率。因此本研究發展出一具撓性結構的橡膠軸承主動平台,依據此平台設計相應的控制系統,將平台安裝於線性馬達上,並透過架設CCD鏡頭,驗證主動平台系統的振動抑制能力。在平台設計上,以四組橡膠搭配中心鋁塊組成橡膠軸承拘束平台運動,平台前端固定撓性結構,仿照真實機台中剛性較低的鏡頭支撐結構,以實驗進行系統進行模型參數辨識最終確立了主動平台的數學模型。在控制器設計上,本研究基於平台數學模型,採用了L.T.設計法和輸入修正法進行控制設計,通過L.T.設計法先後發展出發展出A方案與B方案分別應對系統的定位和減振能力。在平台定位方面,A方案的過衝量及安定時間分別為9.2%和0.16s,搭配輸入修正則降至7.1%及0.09s;在振動抑制方面,於線性馬達上進行振動抑制,A方案的殘留振動與安定時間分別為154.1%和1.3s,搭配輸入修正法則為31.0%和0.60s,因此回授控制搭配輸入修正比照單一控制能有效提升系統定位及減振的能力。為進一步提升回授控制系統擾動抑制能力,發展出的B方案在殘留振動與安定時間分別為30.4%與0.25s,減振能力的提升更為明顯。在CCD影像檢測中,主動平台系統採用上述控制策略皆能提早觀測到清晰的產品特徵。本研究設計一主動平台,運用不同的控制器設計,實現了主動平台定位以及減振的能力,並透過影像結果證實了主動平台搭配控制器能夠有效降低光學檢測過程中殘留振動,從而提升光學檢測效率。
Along with the development of industrial technologies in various manufacturing and metrology applications, fast positioning and vibration suppression play important roles in virtually all tasks requiring high speed of maneuvers with sufficient motion accuracy. One typical example is on the optical inspection system, it performs numerous product defect inspections by fast moving to the desired inspection locations and take images for defect evaluation. Due to the inherent structural compliance and the inertial force generated during fast movement, residual vibrations will be inevitable for the point-to-point movement and this implies that additional settling time would be required for avoiding blurred images. Obviously, mounting a controllable stage on machine can effectively reduce residual vibration, thereby improving inspection efficiency. Therefore, this work develops an active stage with rubber bearings and flexible structure equipping with a CCD camera, designs the corresponding controller, and verifying the vibration suppression capability of the active stage system under the action of the linear motor. In terms of stage design, the four sets of rubber-bonded aluminum blocks form rubber bearing which provide stiffness of the stage, and a flexible beam is mounted on stage for imitating the camera-support structure of the real machine. The model parameters are identified by dynamic testing and the mathematical model of the active stage is obtained. In terms of controller design, this work adopts both loop transmission (L.T.) shaping and input shaping methods. Through the L.T. method, two schemes called A and B, have been developed successively to handle the positioning and vibration suppression. On the issue of stage positioning, the overshoot and settling time of the A scheme are 9.2% and 0.16s. Once it cooperating with input shaping scheme, the corresponding performance can be further reduced to 7.1% and 0.09s. On the vibration suppression issue, the residual vibration and settling time of the A scheme are originally 154.1% and 1.3s and are improved to 31.0% and 0.60s with input shaping schemes. Therefore, the shaping-control integration can effectively improve the system controlled performance in comparison with the results from control only. Meanwhile, in order to further improve the vibration suppression in feedback control, we also develop the B scheme and it successfully reduces residual vibration and settling time to 30.4% and 0.25s. Finally, essential AOI inspection experiments are carried. Based on captured image, the active stage employ above schemes can indeed reduce the blur level to achieve a faster inspection. This work successfully confirmed that the active stage control system can effectively reduce residual vibration during optical inspection, thereby improving inspection efficiency.
摘要 I
Abstract II
Extend Abstract III
致謝 XXI
目錄 XXIII
表目錄 XXIX
圖目錄 XXXI
符號說明 XXXVII
第一章 緒論 1
1.1前言 1
1.2文獻回顧 4
1.3研究動機與目的 7
1.4實驗室相關研究 8
1.5研究方法 10
1.6全文架構 12
第二章 研究背景介紹 15
2.1本章介紹 15
2.2精密工程討論 16
2.2.1精密工程發展 16
2.2.2精密設備之減振及定位討論 17
2.3精密平台應用 19
2.3.1金屬撓性結構精密平台 19
2.2.2橡膠軸承精密平台 22
2.3.3橡膠軸承介紹及相關應用 24
2.4撓性結構之減振應用 28
2.5硬體介紹及相關應用 30
2.5.1 DS1104控制板 30
2.5.2音圈馬達 31
2.5.3線性伺服馬達 32
2.5.4鐳射位移感測器 33
2.3.5 Raspberry Pi及攝影機模組 34
2.6控制法則介紹 35
2.7本章結論 36
第三章 主動平台之設計與分析 37
3.1本章介紹 37
3.2系統特徵介紹 39
3.3設計目標 41
3.4平台系統概念設計 43
3.4.1合規化設計討論 43
3.4.2平台系統機械設計 44
3.4.3感測器選用 44
3.4.4致動器選用 45
3.4.5主動平台系統設計 46
3.5橡膠軸承結構設計與分析 47
3.5.1橡膠軸承結構概念設計 47
3.5.2靜態剛性分析 47
3.5.3動態模型分析 49
3.5.4規格設計 50
3.6撓性結構設計與分析 51
3.6.1撓性結構動態模型分析 51
3.6.2懸臂樑振動分析 52
3.6.3等效偏轉 53
3.6.4規格設計 55
3.7主動平台模型設計與分析 56
3.8本章結論 58
第四章 系統實現與動態建模 59
4.1本章介紹 59
4.2實驗系統設計與實現 61
4.2.1系統架構 61
4.2.2實驗設備介紹 63
4.2.3實驗系統架設 66
4.2.4線性伺服馬達系統搭建 68
4.2.5低通濾波器電路 69
4.2.6 影像檢測實現 70
4.4致動器動態測試與建模 71
4.5橡膠軸承結構測試與建模 73
4.5.1應力鬆弛實驗 73
4.5.2對數衰減實驗 75
4.5.3系統模型建立 76
4.6主動平台測試與建模 78
4.6.1撓性結構模型建立 78
4.6.2 主動平台系統模型建立 80
4.7本章總結 82
第五章 平台定位控制設計與實驗 83
5.1本章介紹 83
5.2控制器設計方法 85
5.2.1 Zeigler-Nichols參數調整法 85
5.2.2 Loop transmission設計法 86
5.2.3輸入修正設計法 90
5.3控制器設計與參數調整流程 92
5.4 L.T.法控制器設計與模擬 95
5.4.1不同Kp參數之比較 96
5.4.2不同Ki參數之比較 98
5.5控制參數選定及模擬比較 101
5.6定位控制實驗系統架構 103
5.7平台回授控制實驗 104
5.7.1 L.T.法控制器步階響應實驗 104
5.7.2控制比較 107
5.8輸入修正法實驗 109
5.8.1 ZV shaper與ZVD shaper實驗比較 109
5.8.2參數不確定強健性比較 110
5.8.3雙重輸入修正法比較 112
5.8.4小結 114
5.9回授控制結合輸入修正法之設計、模擬與實驗 115
5.9.1方案設計 115
5.9.2控制模擬 116
5.9.3控制實驗 116
5.9.4強健性比較 117
5.9.5小結 118
5.10本章結論 120
第六章 平台振動控制設計與實驗 121
6.1本章介紹 121
6.2擾動抑制實驗系統架構 123
6.3 L.T.法A方案擾動抑制實驗 125
6.3.1不同控制參數下擾動抑制比較 125
6.3.2不同運動參數下擾動抑制比較 127
6.3.3小結 128
6.4回授控制結合輸入修正擾動抑制實驗 130
6.4.1系統架構修改 130
6.4.2 輸入修正之設計與實驗 131
6.4.3參數不確定強健性比較 135
6.4.4回授控制結合輸入修正實驗及比較 136
6.5 L.T.法B方案控制設計與模擬 138
6.5.1控制器設計 138
6.5.2不同Kp參數模擬比較 142
6.5.3不同Ki參數模擬比較 145
6 .6 L.T.法B方案控制實驗 148
6.6.1不同控制參數下步階響應比較 148
6.6.2不同控制參數下擾動抑制比較 151
6.6.3不同運動參數下擾動抑制比較 153
6.7 L.T.法不同設計方案之結果討論 155
6.8影像驗證 158
6.8.1影像檢測實驗 158
6.8.2不同控制下影像結果 159
6.8.3連續運動下影像檢測討論 162
6.8.4小結 164
6.9本章結論 165
第七章 研究結果與討論 167
7.1全文歸納 167
7.2討論 171
7.2.1平台設計討論 171
7.2.2控制策略討論 172
7.2.3影像檢測討論 173
7.2.4文獻比較 174
7.3未來展望與未來工作 175
第八章 結論與未來展望 179
10.1本文結論 179
10.2本文貢獻 181
10.3未來工作 182
參考文獻 185
附錄 191
[1]Servo shaft, “http://www.inoservo.com.
[2]P. Beauchemin, “Advances in High Speed Automated Optical Inspection (AOI) Systems, technical article, 2010.
[3]TRI Innovation, AOI TR7500, “https://www.tri.com.tw/en/product/product_detail-11-2-33.html.
[4]AEROTECH, AGS15000 Gantry System, “https://www.aerotech.com/product-catalog/gantry-system/ags15000.aspx.
[5]Ching-Ming Chao, “Study of vibration control on single axis piezoelectric positioning stage by using of PID method, Master Thesis, Southern Taiwan University of Science and Technology, 2017.
[6]DJ Gordon, K Erkorkmaz , “Precision control of a T-type gantry using sensor/actuator averaging and active vibration damping, Precision Engineering, Volume 36, Issue 2, April 2012.
[7]A.T.Elfizy, G.M.Bone, M.A.Elbestawi, “Design and control of a dual-stage feed drive, International Journal of Machine Tools and Manufacture, Volume 45, Issue 2, Pages 153-165, February 2005.
[8]Wei-Chih Wang, Jer-Wei Lee, Kuo-Shen Chen, “Design and vibration control of a notch-based compliant stage for display panel inspection applications, Journal of Sound and Vibration, Volume 333, Issue 10, Pages 2701-2718, 12 May 2014.
[9] J.-W. Lee, Y.-C. Li, K.-S. Chen, Y.-H. Liu, “Design and control of a cascaded piezoelectric actuated two-degrees-of-freedom positioning compliant stage, Precision Engineering, Volume 45, Pages 374-386, July 2016.
[10]Y. Teng, K. Chen and Y. Chen, Design and control of a one-dimensional stage based on elastomeric bearing technology, 2016 12th IEEE/ASME, Auckland, pp. 1-6, 2016.
[11]Y. C. Li, “Analysis, Design, and Decoupling Control of a Single-Axis Coarse Fine Stage Using Compliant Mechanisms and Rubber Bearings, Master Thesis, National Cheng-Kung University, 2017.
[12]K. S. Chen, D. Trumper, and S. Smith, “Design and control for an electromagnetically driven X–Y–θ stage, Precision Engineering, vol. 26, pp. 355-369, 2002.
[13]王維志, “具放大機構之單軸壓電驅動撓性精密定位平台之分析、設計、控制, 國立成功大學機械工程學系學位論文, 2010
[14]李哲維, “堆疊式壓電雙軸精密定位平台之設計、分析與控制, 國立成功大學機械工程學系學位論文, 2011
[15]林佩君, “雙軸式材料測試系統之設計與實驗及其在橡膠軸承之應用, 國立成功大學機械工程學系學位論文, 2014.
[16]鄭晏峰, “新式雙軸材料測試系統之實現與橡膠壓縮、剪力、疲勞測試, 國立成功大學機械工程學系學位論文, 2016.
[17]游逸萱, “結合3D列印與剪力阻尼於撓性定位平台之設計與控制, 國立成功大學機械工程學系學位論文, 2016.
[18]鄧諺舉, “新型橡膠軸承一維定位平台之分析、設計、控制, 成功大學機械工程學系學位論文, 2015.
[19]陳昱丞, “新型三軸橡膠軸承定位平台之分析、設計與控制, 國立成功大學機械工程學系學位論文, 2017.
[20]李昱慶, “結合撓性結構與橡膠軸承之單軸粗細定位平台之設計、分析與解耦合控制, 國立成功大學機械工程學系學位論文, 2017.
[21]尹瑞豐, “非線性輸入修正法之研究與其在機電系統減振上之應用, 國立成功大學機械工程學系學位論文, 2004.
[22]陳敬元, “輸入修正法結合回授控制之研究與其在長距離移動之機電系統定位最佳化與減振之應用, 國立成功大學機械工程學系學位論文, 2005.
[23]戴辰軒, “輸入修正法於天車系統運動之振動抑制控制、實驗驗證與有限元素法結構動態分析, 國立成功大學機械工程學系學位論文, 2009.
[24]陳韋如, “有限元素分析於撓性長距離移動系統之輸入修正設計與應用, 國立成功大學機械工程學系學位論文, 2010.
[25]Colin G. Gordon Generic criteria for vibration-sensitive equipment, Proc. SPIE 1619, Vibration Control in Microelectronics, Optics, and Metrology,Vol. 1619, pp. 71-85, February 1992.
[26]Eugene I. Rivin, “Vibration isolation of precision equipment, Precision Engineering, Volume 17, Issue 1, Pages 41-56, 1995.
[27]P. Schellekens, N. Rosielle, H. Vermeulen, M. Vermeulen, S. Wetzels, W. Pril, “Design for Precision: Current Status and Trends, CIRP Annals, Volume 47, Issue 2, Pages 557-586, 1998.
[28]Butler, H., “Position control in lithographic equipment : an enabler for current-day chip manufacturing, IEEE Control Systems Magazine, 31(5), 28-47, 2011.
[29]B. J. Yi, G. B. Chung, H. Y. Na, W. K. Kim and I. H. Suh, “Design and experiment of a 3-DOF parallel micromechanism utilizing flexure hinges, IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp. 604-612, August 2003.
[30]A. Balasubramanian, M. B. G. Jun, R. E. Devor, S. G. Kapoor, “A submicron multiaxis positioning stage for micro and nanoscale manufacturing processes, ASME J. of Manufacturing Science and Engineering, vol.130, pp.1-8, June 2008.
[31]Lead rubber bearing, “https://structurae.net/products-services/lasto-lrb-lead-rubber-bearing.
[32]Rivin, Eugene, “Stiffness and damping in mechanical design. CRC Press, 1999.
[33]A. E. Barton Martinelli, “Rubber bearings for precision positioning systems, Master’s thesis, Massachusetts Institute of Technology, 2005.
[34]D. P. Cuff, “Electromagenetic Nanopositioner, Master’s thesis, Massachusetts Institute of Technology, 2006.
[35]Gent Alan N, “Engineering with rubber: how to design rubber components. Carl Hanser Verlag GmbH Co KG, 2012.
[36]R. M. Christensen, “Theory of viscoelasticity:an introduction, Academic Press, 1982.
[37]P. B. Lindley, “Compression module for blocks of soft elastic material bonded to rigid end plates, Journal of Strain Analysis, vol. 14, pp. 11-16, 1979.
[38]P. B. Lindley, “Engineering design with natural rubber, The Malaysian Rubber’s Research Association, 1970.
[39]A. N. Gent and P. B. Lindley, “The compression of bonded rubber blocks, Proceedings of the Institution of Mechanical Engineers, vol. 173, no. 1, pp. 111-122, June 1959.
[40]Huaizhong Li, M. D. Le, “Motion Profile Design to Reduce Residual Vibration of High-Speed Positioning Stages, IEEE/ASME Transactions on Mechatronics, Volume 14, Page(s) 264 – 269, February 2009.
[41]W. He and S. S. Ge, “Vibration Control of a Flexible Beam With Output Constraint, IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 5023-5030, Aug. 2015.
[42]Song, G., and Gu, H. “Active Vibration Suppression of a Smart Flexible Beam Using a Sliding Mode Based Controller. Journal of Vibration and Control, 13(8), 1095–1107, 2007.
[43]Zhi-cheng Qiu,Xian-min Zhang,Hong-xin Wu,Hong-hua Zhang, “Optimal placement and active vibration control for piezoelectric smart flexible cantilever plate, Journal of Sound and Vibration, Volume 301, Issues 3–5, Pages 521-543, 3 April 2007.
[44]E. Pereira, S. S. Aphale, V. Feliu and S. O. R. Moheimani, “Integral Resonant Control for Vibration Damping and Precise Tip-Positioning of a Single-Link Flexible Manipulator, IEEE/ASME Transactions on Mechatronics, vol. 16, no. 2, pp. 232-240, April 2011.
[45]T. R. Kane, R. Ryan, And A. K. Banerjee, “Dynamics of a cantilever beam attached to a moving base, Journal of Guidance, Control, and Dynamics, 10:2, 139-151, 1987.
[46]L. Qiu, E.J. Davison, “Performance limitations of non-minimum phase systems in the servomechanism problem, Automatica, Volume 29, Issue 2, Pages 337-349, 1993.
[47]Swaminathan Gopalswamy and J. Karl Hedrick, “Tracking nonlinear non-minimum phase systems using sliding control, International Journal of Control, 57:5, 1141-1158, 1993.
[48]呂毓笙, “加速度回授於撓性結構之振動控制, 國立成功大學機械工程學系學位論文, 2014.
[49]Danielle Collins, “How do rotary voice coil actuators work, Motion Control Tips, July 17, 2018.
[50]Danielle Collins, “3 things to consider when choosing a linear servo motor, Motion Control Tips, February 8, 2019.
[51]Panasonic, Laser displacement sensor, “https://www.panasonic.biz/ac/na/service/tech_support/fasys/tech_guide/measurement/laser/index.jsp.
[52] Raspberry Pi, “https://www.raspberrypi.org/.
[53]Vogel Business Media, Motion Control, https://www.vogelitalia.it
[54]Singiresu S. Rao, “Mechanical Vibration, Fifth Edition, 1993.
[55]Free Vibration of a Cantilever Beam (Continuous System), “http://vlab.amrita.edu/?sub=62&brch=175&sim=1080&cnt=1, Retrieved 9 March 2019
[56]J. G. Ziegler and N. B. Nichols, “Optimum settings for automatic controllers, Transactions of the ASME, vol.64, pp.759–768, 1942.
[57]W. E. Singhose, “Command Generation for Flexible Systems, Ph.D. Thesis, Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA, 1997.
[58]B.W. Rappole, N.C Singer., W.P. Seering, “Multiple-Mode Impulse Shaping Sequences for Reducing Residual Vibrations, 23rd biennial Mechanisms conference, Minneapolis, MN, 1994.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top