跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/16 09:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林俊霖
研究生(外文):Chun-Lin Lin
論文名稱:非完美通道狀態資訊支持之無線傳收技術
論文名稱(外文):Transceiving Techniques Assisted by Imperfect Channel-State Information
指導教授:林嘉慶林嘉慶引用關係
指導教授(外文):Jia-Chin Lin
學位類別:博士
校院名稱:國立中央大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:101
中文關鍵詞:分集合成接收增益轉傳中繼非同調區塊碼
外文關鍵詞:diversity combining receptionamplify-and-forward (AF) relaynoncoherent block-coded
相關次數:
  • 被引用被引用:0
  • 點閱點閱:204
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:2
本學位論文主要討論三個主題:空間最佳接收機之設計,基於增益轉傳型中繼網路之最高訊雜比分集結合技術和非同調區塊碼研究。 三項主題均為處理在接收機未能取得完美的通道狀態資訊情形下,如何降低接收端之誤碼率。 在第二章中,提出了一種新技術,用於在空間相關的複數型中上分佈(Nakagami-m)衰落通道(fading channel)上,藉由分集合成技術,可將接收訊號在不完美的通道狀態信息考量下完成分集結合。 第三章研究了由增益轉傳(amplify-and-forward, AF)中繼網路(relay network)中,目的地節點只能獲得量化的通道狀態時所能獲致最高訊雜比分集合成(maximal-ratio combining, MRC)接收效能。 在第四章中我們研究了NBC-TAPSK (noncoherent block-coded twisted-amplitude and phase-shift keying) 設計理念,雖然沒有相位的資訊,由模擬與分析的結果,NBC-8TAPSK非同調區塊碼技術使用與較低的複雜度,且能達成較低的誤碼率。
Three topics are studied in this dissertation: (1) a spatial optimum receiver, (2) amplify-and-forward relay networks, and (3) noncoherent block codes. All of them work with imperfect channel state information (CSI). Chapter 2 proposes a novel technique to facilitate diversity combining reception with imperfect channel state information (CSI) over spatially correlated complex-valued Nakagami-m fading channels. Chapter 3 studies an amplify-and-forward (AF) relay network while considering the impact of the quantization of the source-to-relay (SR) CSI. Chapter 4 studies a three-layer noncoherent block-coded twisted amplitude- and phase-shift keying (NBC-TAPSK) scheme. Simulation results confirm that the NBC-TAPSK detector outperforms the detector for the pilot-training-based coherent scheme and that NBC-8TAPSK offers better error performance than NBC-8PSK.
1. Introduction………………………….. 1
1.1 Historical Perspective on Synchronization Techniques………….......... 1
1.2 Synchronization in Mobile Communication………………………
1.3 Challenges…………………………………………. 9
1.4 Summary…………………………………………………… 11

2. Spatial Optimum Receiver………. 13
2.1 Preliminaries..……………………….…. 13
2.2 Signal Models and Problem Formulation………… 16
2.3 Conventional Derivations of Statistics………… 20
2.4 Proposed Technique for a Practical Inner Receiver……..........…..……… 20
2.5 LSINR for MRC Reception………………………………...……… 23
2.6 Derivations of First- and Second-Order Statistics……………........…… 26
2.7 Correlated Complex-Valued Nakagami-m Fading Simulator…............….. 28
2.8 Simulations……………....…………………………………………… 32
2.9 Summary……………………….......…………………………………… 41
3. Low-Order Statistics of MRC Reception in Transparent AF Relay Networks…….…………………………………………………………… 42
3.1 Preliminaries…………………...……………………………………... 42
3.2 Signal Model and Channel Quantization………….. 46
3.3 SNR and SER Derivations………………………………………… 49
3.4 Quantization Methods………………………….………………….. 55
3.5 Simulations and Numerical Results………………... 60
3.6 Summary…………………………………………………… 63
4. Noncoherent Block-Coded 8TAPSK and 8PSK for Quasistatic Fading Channels. …………………………….………….. 64
4.1 Preliminaries………………………………………………...………... 64
4.2 Noncoherent Block-Coded Modulation and Structure……….........……… 68
4.3 Noncoherent Block-Coded TAPSK Modulation Schemes….............……… 71
4.4 Detector and Distance for a Quasi-Static Fading Channel……...........……... 75
4.5 Simulation Results………………………………………………… 80
4.6 Summary…………………………...……….....……………………… 90
5. Conclusions……………………………………...………………………. 91
[1] J.-C. Lin, “Initial synchronization assisted by inherent diversity over time-varying frequencyselective fading channels,” IEEE Trans. Wireless Commun., vol. 13, no. 5, pp. 2518-2529, May 2014.
[2] J.-C. Lin, Y.-T. Sun, and H. V. Poor, “Initial synchronization exploiting inherent diversity for lte sector search process,” IEEE Trans. Wireless Commun., vol. 15, pp. 1114–1128, Feb. 2016.
[3] Recommendation G.8261, Timing and synchronization aspects in packet networks, ITU-T Std.
[4] Recommendation G.8271, Time and phase synchronization aspects in packet networks, ITU-T Std.
[5] TS 145 010, Radio Subsystem Synchronization, ETSI Std.
[6] TS 25.104, Universal Mobile Telecommunication Systems (UMTS), UTRA BS FDD, Radio Transmission and Reception, 3GPP Std.
[7] TS 25.105, Universal Mobile Telecommunication Systems (UMTS), UTRA BS TDD, Radio Transmission and Reception, 3GPP Std.
[8] TS 25.123, Requirements for support of radio resource management (TDD), 3GPP Std.
[9] TS 25.402, Universal Mobile Telecommunications Systems (UMTS); Synchronization in UTRAN Stage 2, 3GPP Std.
[10] C.S0010-B, Recommended Minimum Performance Standards for CDMA2000 Spread Spectrum Base Stations, 3GPP2 Std.
[11] C.S0002-C, Physical Layer Standard for CDMA2000 Spread Spectrum Systems, 3GPP2 Std.
[12] Evolved Universal Terrestrial Radio Access (E-UTRA); Requirements for Support of Radio Resource Management, 3GPP TS 36.133, 3GPP Std. v. 10.1.0, 2011.
[13] Evolved Universal Terrestrial Radio Access (E-UTRA); TDD Home eNode B (HeNB) Radio Frequency (RF) Requirements Analysis, 3GPP TR 36.922, 3GPP Std. v. 10.0.0, 2011.
[14] Evolved Universal Terrestrial Radio Access (E-UTRA); User Equipment (UE) Radio Transmission and Reception (3GPP TS 36.101 version 10.3.0 Release 10), 3GPP Std. v. 10.3.0, 2011.
[15] 5G white paper: New wave towards future societies in the 2020s, 5G Forum Std., Mar. 2015.
[16] 5G white paper, [Online] Available: http://www.ngmn.org/5G-white-paper.html, NGMN Alliance Std.
[17] D. G. Brennan, “Linear diversity combining techniques,” Proc. IRE, vol. 47, pp. 1075–1102, June 1959.
[18] V. K. Dwivedi and G. Singh, “Error-rate analysis of the OFDM for correlated Nakagami-m fading channel by using maximal-ratio combining diversity,” Intern. J. Microwave and Wireless Technol., vol. 3, pp. 717–726, June 2011.
[19] J.-C. Lin, H.-K. Chang, M.-L. Ku, and H. V. Poor, “Impact of imperfect source-to-relay CSI in amplify-and-forward relay networks,” IEEE Trans. Veh. Technol., vol. 66, pp. 5056–5069, June 2017.
[20] M. K. Simon and M. S. Alouini, Digital Communication over Fading Channels., New York: Wiley, 2005.
[21] K. I. Chan and J. C.-I. Chuang, “Required interleaving depth in Rayleigh fading channels,” in Proc. IEEE Global Telecommunications Conference, London, U. K., Nov. 18–22, 1996, pp. 1417–1421.
[22] M.-S. Alouini and A. J. Goldsmith, “Adaptive modulation over Nakagami fading channels,” Wireless Personal Communications, Kluwer Academic Publishers, vol. 13, pp. 119–143, 2000.
[23] J. Anastasov, S. Panić, M. Stefanović, and V. Milenković, “Capacity of correlative Nakagami-m fading channels under adaptive transmission and maximal-ratio combining diversity technique,” Journ. of Commun. Technol. and Electron., Pleiades Publishing Inc., vol. 58, pp. 1227–1234, 2013.
[24] M. D. Yacoub, J. E. Bautista, and L. G. D. R. Guedes, “On higher order statistics of the Nakagami-m distribution,” IEEE Trans. Veh. Technol., vol. 48, pp. 2360–2369, May 1999.
[25] M. D. Yacoub, C. R. C. M. da Silva, and J. E. V. Bautista, “Second-order statistics for diversity-combining techniques in Nakagami-fading channels,” IEEE Trans. Veh. Technol., vol. 50, pp. 1464–1470, Nov. 2001.
[26] C. D. Iskander and P. T. Mathiopoulos, “Analytical level crossing rates and average fade durations for diversity techniques in Nakagami fading channels,” IEEE Trans. on Commun., vol. 50, pp. 1301–1309, Aug. 2002.
[27] X. Dong and N. C. Beaulieu, “Average level crossing rate and average fade duration of selection diversity,” IEEE Commun. Lett., vol. 5, pp. 396–398, Oct. 2001.
[28] ------, “Average level crossing rate and average fade duration of low-order maximal ratio diversity with unbalanced channels,” IEEE Commun. Lett., vol. 6, pp. 135–137, Apr. 2002.
[29] J.-C. Lin, “An approach to the second-order statistics of maximum-ratio combining-like reception over independent Nakagami channels,” IEEE Trans. Veh. Technol., vol. 61, pp. 859–865, Feb. 2012.
[30] F. Adachi, M. T. Feeney, and J. D. Parsons, “Effects of correlated fading on level crossing rates and average fade durations with predetection diversity reception,” IEE Proceedings, vol. 135, pp. 11–17, Feb. 1988.
[31] J. C. S. S. Filho, G. Fraidenraich, and M. D. Yacoub, “Exact crossing rates of dual diversity over unbalanced correlated Rayleigh channels,” IEEE Commun. Lett., vol. 10, pp. 37–39, Jan. 2006.
[32] D. B. da Costa, M. D. Yacoub, J. C. S. S. Filho, and G. Fraidenraich, “General exact level crossing rate and average fade duration for dual-diversity combining of nonidentical correlated Weibull signals,” IEEE Trans. Veh. Technol., vol. 56, pp. 3571–3577, Nov. 2007.
[33] G. Fraidenraich, M. D. Yacoub, J. R. Mendes, and J. C. S. S. Filho, “Second-order statistics for diversity-combining of non-identical correlated Hoyt signals,” IEEE Trans. on Commun., vol. 56, pp. 183–188, Feb. 2008.
[34] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive MIMO for next generation wireless systems,” IEEE Commun. Mag., vol. 52, pp. 169–195, Feb. 2014.
[35] V. A. Aalo, “Performance of maximal-ratio diversity systems in a correlated Nakagami-m fading environment,” IEEE Trans. on Commun., vol. 43, pp. 2360–2367, Aug. 1995.
[36] Q. T. Zhang, “Maximal-ratio combining over Nakagami fading channels with an arbitrary branch covariance matrix,” IEEE Trans. Veh. Technol., vol. 48, pp. 1141–1150, July 1999.
[37] M. S. Alouini, A. Abdi, and M. Kaveh, “Sum of gamma variates and performance of wireless communication systems over Nakagami-fading channels,” IEEE Trans. Veh. Technol., vol. 50, pp. 1471–1480, Nov. 2001.
[38] K. Zhang, Z. Song, and Y. L. Guan, “Cholesky decomposition model for correlated MRC diversity systems in Nakagami fading channels,” in Proc. IEEE Veh. Technol. Conf., 2002, (VTC 2002), 2002, pp. 1515–1519.
[39] D. Li and V. K. Prabhu, “Average level crossing rates and average fade durations for maximal-ratio combining in correlated Nakagami channels,” in Proc. IEEE Wireless Commun. and Network. Conf., March 2004, (WCNC 2004), 2004, pp. 339–344.
[40] X. Dong and N. C. Beaulieu, “Optimal maximal ratio combining with correlated diversity branches,” IEEE Commun. Lett., vol. 6, pp. 22–24, Jan. 2002.
[41] M. D. Yacoub, G. Fraidenraich, and J. C. S. S. Filho, “Nakagami-m phase-envelope joint distribution,” Electr. Lett., vol. 41, pp. 259–261, Mar. 2005.
[42] M. D. Yacoub, “Nakagami-m phase-envelope joint distribution: An improved model,” in Proc. IEEE MTT-S Intern. Microw. Optoelec. Conf. (IMOC 2009), 2009, pp. 335–339.
[43] X. Dong and N. C. Beaulieu, “Nakagami-m phase-envelope joint distribution: A new model,” IEEE Trans. Veh. Technol., vol. 59, pp. 1552–1557, Mar. 2010.
[44] M. S. Alouini, A. Scaglione, and G. B. Giannakis, “PCC: Principal components combining for dense correlated multipath fading environments,” in Proc. IEEE Veh. Technol. Conf., 2000, (VTC 2000), 2000, pp. 2510–2517.
[45] P. Loskot and N. Beaulieu, “Decorrelation and orthogonalization of correlated diversity branches for HS/MRC diversity,” in Proc. IEEE Veh. Technol. Conf. 2008, (VTC 2008-Spring), 2008, pp. 335–339.
[46] C. Polprasert and J. A. Ritcey, “A Nakagami fading phase difference distribution and its impact on BER performance,” IEEE Trans. Wireless Commun., vol. 7, pp. 2805–2813, July 2008.
[47] K. Zhang, Z. Song, and Y. L. Guan, “Simulation of Nakagami fading channels with arbitrary cross-correlation and fading parameters,” IEEE Trans. Wireless Commun., vol. 3, pp. 1463–1468, May 2004.
[48] N. C. Beaulieu and C. Cheng, “Efficient Nakagami-m fading channel simulation,” IEEE Trans. Veh. Technol., vol. 54, pp. 413–424, Feb. 2005.
[49] J. C. S. S. Filho and M. D. Yacoub, “On the simulation and correlation properties of phase-envelope Nakagami fading processes,” IEEE Trans. on Commun., vol. 57, pp. 906–909, Apr. 2009.
[50] J. C. S. S. Filho, B. V. Teixeira, M. D. Yacoub, and G. T. F. de Abreu, “The RM Nakagami fading channel simulator,” IEEE Trans. Wireless Commun., vol. 12, pp. 2323–2333, May 2013.
[51] R. D. Dony, Karhunen-Loéve Transform. Editors: K. R. Rao and P. C. Yip, Boca Raton, CRC Press LLC, 2001.
[52] J. G. Proakis and M. Salehi, Digital Communications. 5th ed., McGraw-Hill, 2008.
[53] J.-C. Lin, “Revisit on maximum ratio combining reception practically attained across correlated Nakagami-m branches,” in Proc. Wireless Telecommunications Symposium, (WTS 2015), New York, USA, Apr. 15–17, 2015.
[54] M. Nakagami, The m-distribution a general formula of intensity distribution of rapid fading. Statistical Methods in Radio Wave Propagation, W. C. Hoffman, Ed. Elmsford, NY: Pergamon, 1960.
[55] I. S. Gradshteyn, I. M. Ryzhik, and A. Jeffrey, Table of Integrals, Series, and Products., ELSEVIER, Academic Press, 2007.
[56] S. Haykin, Communication Systems., John Wiley & Sons, Inc., 2001.
[57] S. Kotz and J. Adams, “Distribution of sum of identically distributed exponentially correlated gamma variables,” Annals of Math Statistics, vol. 35, pp. 227–283, 1964.
[58] Q. T. Zhang, “A decomposition technique for efficient generation of correlated Nakagami fading channels,” IEEE Trans. Wireless Commun. vol. 18, pp. 2385–2392, Nov. 2000.
[59] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
[60] Physical Channels and Modulation (Release 8), Technical Specification Group Radio Access Network; Evolved University Terrestrial Radio Access (E-UTRA), 3GPP Std. TS 36.211 V8.3.0, 2005.
[61] J. Kim, J. Hwang, K. J. Lee, and I. Lee, “Blockwise amplify-and-forward relaying strategies for multipoint-to-multipoint MIMO networks,” IEEE Trans. Wireless Commun., vol. 10, pp. 2028–2033, July 2011.
[62] F. Khan, Y. Chen, and M. Alouini, “Novel receivers for AF relaying with distributed STBC using cascaded and disintegrated channel estimation,” IEEE Trans. Wireless Commun., vol. 11, pp. 1370–1379, Apr. 2012.
[63] T. Q. Duong, G. C. Alexandropoulos, H. Zepernick, and T. A. Tsiftsis, “Orthogonal space-time block codes with CSI-assisted amplify-and-forward relaying in correlated Nakagami-m fading channels,” IEEE Trans. Veh. Technol., vol. 60, pp. 882–889, Mar. 2011.
[64] Z. Li, X. G. Xia, and M. H. Lee, “A simple orthogonal space-time coding scheme for asynchronous cooperative systems for frequency selective fading channels,” IEEE Trans. on Commun., vol. 58, pp. 2219–2224, Aug. 2010.
[65] X. Li, C. Xing, Y.-C. Wu, and S. C. Chan, “Timing estimation and resynchronization for amplify-and-forward communication systems,” IEEE Trans. Signal Processing, vol. 58, pp. 2218–2229, Apr. 2010.
[66] Q. Huang, M. Ghogho, J. Wei, and P. Ciblat, “Practical timing and frequency synchronization for OFDM-based cooperative systems,” IEEE Trans. Signal Processing, vol. 58, pp. 3706–3716, July 2010.
[67] Y. Yao and X. Dong, “Multiple CFO mitigation in amplify-and-forward cooperative OFDM transmission,” IEEE Trans. on Commun., vol. 60, pp. 3844–3854, Dec. 2012.
[68] A. A. Nasir, H. Mehrpouyan, S. Durrani, S. D. Blostein, R. A. Kennedy, and B. Ottersten, “Transceiver design for distributed STBC based AF cooperative networks in the presence of timing and frequency offsets,” IEEE Trans. Signal Processing, vol. 61, pp. 3143–3158, June 2013.
[69] S. Alamouti, “A simple transmit diversity technique for wireless communications,” IEEE Trans. Signal Processing, vol. 16, pp. 1451–1458, Oct. 1998.
[70] K.-P. Chou and J.-C. Lin, “Disintegrated channel estimation in scalable filter-and-forward relay network with IRI coordination,” in Proc. IEEE Wireless Telecommunications Symposium, (WTS 2015), New York, USA, Apr. 15–17, 2015.
[71] K.-P. Chou, J.-C. Lin, and H. V. Poor, “Disintegrated channel estimation in filter-and-forward relay networks,” IEEE Trans. Commun., vol. 64, pp. 2835–2847, July 2016.
[72] M. Malkawi and I. M. Kim, “Hard/soft detection with limited CSI for multi-hop systems,” IEEE Trans. Wireless Commun., vol. 8, pp. 3435–3441, July 2009.
[73] P. Liu and I. M. Kim, “Optimum/sub-optimum detectors for multi-branch dual-hop amplify-and-forward cooperative diversity networks with limited CSI,” IEEE Trans. Wireless Commun., vol. 9, pp. 78–85, Jan. 2010.
[74] Z. Peng, L.-C. Wang, W. Xu, and C. Zhao, “Achievable rate analysis and feedback design for multiuser MIMO relay with imperfect CSI,” IEEE Trans. Wireless Commun., vol. 13, pp. 780–793, Feb. 2014.
[75] S. Han, S. Ahn, E. Oh, and E. Hong, “Effect of channel-estimation error on BER performance in cooperative transmission,” IEEE Trans. Veh. Technol., vol. 58, pp. 2083–2088, May 2009.
[76] O. Amin, S. S. Ikki, and M. Uysal, “On the performance analysis of multirelay cooperative diversity systems with channel estimation errors,” IEEE Trans. Veh. Technol., vol. 60, pp. 2050–2059, June 2011.
[77] J.-C. Lin and H. V. Poor, “Principal component analysis and combining for spatially correlated Nakagami-m fading channels,” IEEE Trans. Wireless Commun., under R1 review.
[78] S. Haykin, Communication Systems. John Wiley, 2001.
[79] S. P. Lloyd, “Least squares quantization in PCM,” IEEE Trans. Wireless Commun., vol. 28, pp. 129–137, Mar. 1982.
[80] M. Skonglund and G. Jöngren, “On the capacity of a multiple-antenna communication link with channel side information,” IEEE Trans. Wireless Commun., vol. 21, pp. 395–405, Apr. 2003.
[81] V. Lau, Y. Liu, and T.-A. Chen, “On the design of MIMO block-fading channels with feedback-link capacity constraint,” IEEE Trans. Commun., vol. 52, pp. 62–70, Jan. 2004.
[82] K. Mukkavilli, A. Sabharwal, E. Erkip, and B. A. Aazhang, “On beamforming with finite rate feedback in multiple antenna systems,” IEEE Trans. Wireless Commun., vol. 49, pp. 2735–2747, Oct. 2003.
[83] A. S. D. Rajan and B. A. Aazhang, “Outage behavior with delay and CSIT,” in Proc. IEEE Intern. Conf. on Commun., June 2004, pp. 578–582.
[84] A. Hjørungnes and D. Gesbert, “Precoding of orthogonal space-time block codes in arbitrarily correlated MIMO channels: Iterative and closed-form solutions,” IEEE Trans. Wireless Commun., vol. 6, pp. 1072–1082, Mar. 2007.
[85] S. Zhou and B. Li, “BER criterion and codebook construction for finite-rate precoded spatial multiplexing with linear receivers,” IEEE Trans. Signal Processing, vol. 54, pp. 1653–1665, May 2006.
[86] D. J. Love, R. W. Heath, and T. Strohmer, “Grassmannian beamforming for multiple-input multiple-output wireless systems,” IEEE Trans. Wireless Commun., vol. 49, pp. 2735–2747, Oct. 2003.
[87] A. Narula, M. J. Lopez, M. D. Trott, and G. W. Wornell, “Efficient use of side information in multiple-antenna data transmission over fading channels,” IEEE Trans. Wireless Commun., vol. 16, pp. 1423–1436, Oct. 1998.
[88] O. Amin, B. Gedik, and M. Uysal, “Channel estimation for amplify-and-forward relaying: Cascaded against disintegrated estimators,” IET Commun., vol. 4, pp. 1207–1216, July 2010.
[89] X. B. Z. Fang, X. Zho and Z. Wang, “Outage minimized relay selection with partial channel information,” in Proc. IEEE Intern. Conf. on Acoustics, Speech and Signal Process., (ICASSP 2009), Apr. 2009, pp. 2617–2620.
[90] M. M. Abdallah and H. C. Papadopoulos, “Beamforming algorithms for information relaying in wireless sensor networks,” IEEE Trans. Signal Processing, vol. 56, pp. 4772–4784, Oct. 2008.
[91] E. Karamad, B. Khoshnevis, and R. S. Adve, “Quantization and bit allocation for channel state feedback in relay-assisted wireless networks,” IEEE Trans. Signal Processing, vol. 61, pp. 327–339, Jan. 2013.
[92] T. M. Cover and J. A. Thomas, Elements of Information Theory. John Wiley & Sons, Inc., 1991.
[93] R. E. Ziemer and W. H. Tranter, Principles of Communications: Systems, Modulation, and Noise., John Wiley & Sons, 2010.
[94] J. N. Laneman and G. W. Wornell, “Energy efficient antenna sharing and relay for wireless networks,” in Proc. IEEE Communications Networking Conference, Chicago, IL, US, Sept. 23–28, 2000, pp. 7–12.
[95] M. O. Hasna and M. S. Alouini, “A performance study of dual-hop transmission with fixed gain relays,” IEEE Trans. Wireless Commun., vol. 3, pp. 1963–1968, Nov. 2004.
[96] M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover, 1970.
[97] P. A. Anghel and M. Kaveh, “Exact symbol error probability of a cooperative network in a Rayleigh-fading environment,” IEEE Trans. Wireless Commun., vol. 3, pp. 1416–1421, Sept. 2004.
[98] M. K. Simon and M.-S. Alouini, Digital Communication over Fading Channels. John Wiley & Sons, 2000.
[99] I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Prducts. Academic Press, 2007.
[100] B. P. Lathi and Z. Ding, Modern Digital and Analog Communication Systems., Oxford University Press, 2010.
[101] W. C. Jakes, Microwave Mobile Communications. New York: Wiley, 1974.
[102] A. E. Gamal and Y.-H. Kim, Network Information Theory. Cambridge University Press, 2011.
[103] D. Warrier and U. Madhow, “Spectrally efficient noncoherent communication,” IEEE Trans. Inform. Theory, vol. 48, pp. 651-668, Mar 2002.
[104] R. Knopp and H. Leib, “M-ary phase coding for the noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 40, no. 6, pp. 1968-1984, Nov. 1994.
[105] R. Y. Wei, “Noncoherent block-coded MPSK,” IEEE Trans. on Commun., vol. 53, no. 6, pp. 978-986, June 2005.
[106] R. Y. Wei and Y. M. Chen, “Further results on noncoherent block-coded MPSK,” IEEE Trans. on Commun., vol. 56, no. 10, pp. 1616-1625, Oct. 2008.
[107] R. Y. Wei, S. S. Gu and T. C. Sue, “Noncoherent block-coded TAPSK,” IEEE Trans. on Commun., vol. 57, no. 11, pp. 3195-3198, Nov. 2009.
[108] R. Y. Wei, T. S. Lin and S. S. Gu, “Noncoherent block-coded TAPSK and 16QAM using linear component codes,” IEEE Trans. on Commun., vol. 58, no. 9, pp. 2493-2498, Sep. 2010.
[109] Y. M. Chen, and Y. L. Ueng, “Noncoherent amplitude/phase modulated transmission schemes for Rayleigh block fading channels” IEEE Trans. on Commun., vol. 61, no. 1, pp. 217-227, Jan. 2013.
[110] R. Nuriyev and A. Anastasopoulos, “Capacity and coding for the block-independent noncoherent AWGN channel,” IEEE Trans. Inform. Theory, vol. 51, no. 3, pp. 866-883, Mar. 2005.
[111] R. Nuriyev and A. Anastasopoulos, “Pilot-symbol-assisted coded transmission over the block-noncoherent AWGN channel,” IEEE Trans. on Commun., vol. 51, no. 6, pp. 953-963, Jun. 2003.
[112] F. W. Sun and H. Leib, “Multiple-phase codes for detection without carrier phase reference,” IEEE Trans. Inform. Theory, vol. 44, no. 4, pp. 1477-1491, July 1998.
[113] R. Y. Wei, “Differential encoding by a look-up table for quadrature-amplitude modulation,” IEEE Trans. on Commun., vol. 59, no. 1, pp. 84-94, Jan. 2011.
[114] D. Divsalar and M. K. Simon, “Maximum-likelihood differential detection of uncoded and trellis coded amplitude phase modulation over AWGN and fading channels-Metrics and performance,” IEEE Trans. on Commun., vol. 42, no. 1, pp. 76-89, Sept. 1994
[115] Schroeder, Daniel (2000). An Introduction to Thermal Physics. United States: Addison Wesley Longman. pp. 20–21. ISBN 0-201-38027-7.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top