跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡朋翰
研究生(外文):TSAI, PENG-HAN
論文名稱:磁共振傳送端之無線充電系統設計
論文名稱(外文):Design of Wireless Charging System for Magnetic Resonance Transmitter
指導教授:陳華明陳華明引用關係林憶芳林憶芳引用關係
指導教授(外文):CHEN, HUA-MINGLIN, YI-FANG
口試委員:陳弘典陳建宏陳華明林憶芳
口試委員(外文):CHEN, HONG-DIANCHEN, CHIEN-HUNGCHEN, HUA-MINGLIN, YI-FANG
口試日期:2019-07-27
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:光電與通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:94
中文關鍵詞:無線電力傳輸諧振電路亥姆霍茲線圈磁共振磁場
外文關鍵詞:Wireless Power Transmission(WPT)Resonant CircuitHelmholtz CoilsMagnetic ResonanceMagnetic Fields
相關次數:
  • 被引用被引用:0
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
在本論文提出無線充電之磁共振系統與天線設計,應用頻段為6.78 MHz之,符合A4WP聯盟的Rezence規範。利用電磁模擬軟體(HFSS 15)進行分析以及優化,最後,以實際製作共振線圈,量測S參數、傳輸係數,驗證共振天線之傳輸效率。
內文提出兩種磁共振線圈的設計方式,分別為「單極式」與「雙極式」磁共振天線,天線均採用平面式設計,使線圈不易受到擠壓變形,尺寸為150 × 150 × 1 mm3 之FR4板,並比較兩種線圈之差異,其中雙極式線圈在各方面性能皆優於另一個。
在最後將兩種天線結合系統,並比較量測不同距離的傳輸表現進行探討與分析,能在未來進行改良與優化,實現大尺寸充電板之應用。

In this paper, the magnetic resonance system and antenna design for wireless charging are proposed, and the operation frequency is fixed to 6.78 MHz, which is in line with the Rezence specification of the A4WP Alliance. The electromagnetic simulation software (HFSS 15) is used for analysis and optimization, the Resonance coils are measured (S-parameters, transmission coefficient) to compare with the simulation results.
The magnetic resonance coils are designed in two configurations: "unipolar" and "bipolar". All antennas are etched on the size of 150 × 150 × 1 mm3 FR4 substrates, make coil not easily deformed by extrusion and compare the differences between the two coils.
In the end, the two antennas are combined into the system, and the transmission performance of different distances is compared and analyzed. It can be improved and optimized in the future to realize the application of large-size charging board.

摘要 i
ABSTRACT ii
誌 謝 iii
目 錄 iv
表目錄 v
圖目錄 vi
第一章 序論 1
1.1 前言 1
1.2 研究目的 1
1.3 文獻導覽 2
1.4 論文題要 3
第二章 單極式磁共振天線設計 4
2.1 前言 4
2.2 天線原理與設計 5
2.3 天線量測實驗與參數探討結果 19
2.4 結論 37
第三章 雙極式磁共振天線設計 38
3.1 前言 38
3.2 天線量測實驗與參數探討結果 39
3.3 結論 59
第四章 磁共振無線傳輸系統整合設計 60
4.1 前言 60
4.2 無線充電系統原理與架構 61
4.3 實驗結果與討論 65
4.4 結論 76
第五章 結論與未來發展 77
參考文獻 79


[1]S. Schaecher和M. Brandl,「擺脫「對準才能充」困擾共振式無線充電大顯神通」,2018。Availble in:https://www.2cm.com.tw/2cm/zh-tw/tech/5E747405B3484F68ABB812286505D186
[2]IDT,「無線充電技術優劣分析:磁感應vs磁共振」,2013。Availble in:https://www.ctimes.com.tw/DispArt/tw/130506114235.shtml
[3]N. A. Wahab, Z. M. Yasin, N. Hamzah, Z. I. Khan, and M. K. Mohd Salleh, "Investigation on magnetic resonant coupling for low voltage application," 2015 IEEE International RF and Microwave Conference (RFM), Kuching, 2015, pp. 49-53.
[4]M. Kung and K. Lin, "A 6.78 MHz and 13.56 MHz dual-band coil module with a repeater for wireless power transfer systems," 2016 IEEE International Symposium on Antennas and Propagation (APSURSI), Fajardo, 2016, pp. 157-158.
[5]D. Ahn and P. P. Mercier, "Wireless power transfer with concurrent 200-kHz and 6.78-MHz operation in a single-transmitter device," in IEEE Transactions on Power Electronics, vol. 31, no. 7, pp. 5018-5029, July 2016.
[6]R. Huang and B. Zhang, "Frequency, impedance characteristics and HF converters of two-coil and four-coil wireless power transfer," in IEEE Journal of Emerging and Selected Topics in Power Electronics, vol. 3, no. 1, pp. 177-183, March 2015.
[7]K. E. Koh, T. C. Beh, T. Imura, and Y. Hori, "Impedance matching and power division using impedance inverter for wireless power transfer via magnetic resonant coupling," in IEEE Transactions on Industry Applications, vol. 50, no. 3, pp. 2061-2070, May-June 2014.
[8]Y. Zhang, T. Lu, Z. Zhao, F. He, K. Chen, and L. Yuan, "Employing load coils for multiple loads of resonant wireless power transfer," in IEEE Transactions on Power Electronics, vol. 30, no. 11, pp. 6174-6181, Nov. 2015.
[9]J. Baek, C. Ahn, M. Jin, and S. Kwak, "High frequency magnetic resonant coupling wireless power transfer system for middle power charging applications," 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe), Karlsruhe, 2016, pp. 1-5.
[10]X. Zhang, S. L. Ho, and W. N. Fu, "Analysis and optimization of magnetically coupled resonators for wireless power transfer," in IEEE Transactions on Magnetics, vol. 48, no. 11, pp. 4511-4514, Nov. 2012.
[11]J. Kim, D. Kim, and Y. Park, "Free-positioning wireless power transfer to multiple devices using a planar transmitting coil and switchable impedance matching networks," in IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 11, pp. 3714-3722, Nov. 2016.
[12]D. Kim and Y. Park, "Design of a rectangular coil for an effective magnetic resonance wireless power transfer system," 2016 IEEE Transportation Electrification Conference and Expo, Asia-Pacific (ITEC Asia-Pacific), Busan, 2016, pp. 680-683.
[13]Y. Hsieh, Z. Lin, M. Chen, H. Hsieh, Y. Liu, and H. Chiu, "High-efficiency wireless power transfer system for electric vehicle applications," in IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, no. 8, pp. 942-946, Aug. 2017.
[14]X. Bai, Z. Kong, and L. Siek, "A high-efficiency 6.78-MHz full active rectifier with adaptive time delay control for wireless power transmission," in IEEE Transactions on Very Large Scale Integration (VLSI) Systems, vol. 25, no. 4, pp. 1297-1306, April 2017.
[15]L. Cheng, W. Ki, and C. Tsui, "A 6.78-MHz single-stage wireless power receiver using a 3-mode reconfigurable resonant regulating rectifier," in IEEE Journal of Solid-State Circuits, vol. 52, no. 5, pp. 1412-1423, May 2017.
[16]J. Moon, H. Hwang, B. Jo, H. Shin, and S. Kim, "Design of a 5-W power receiver for 6.78 MHz resonant wireless power transfer system with power supply switching circuit," in IEEE Transactions on Consumer Electronics, vol. 62, no. 4, pp. 349-354, November 2016.
[17]S. D. Barman, A. W. Reza, N. Kumar, Md. E. Karim, and A. B. Munir, "Wireless powering by magnetic resonant coupling: recent trends in wireless power transfer system and its applications," in Renewable and Sustainable Energy Reviews, vol. 51, pp. 1525-1552, 2015.
[18]M. R. Basar, M. Y. Ahmad, J. Cho, and F. Ibrahim, "Stable and high-efficiency wireless power transfer system for robotic capsule using a modified Helmholtz coil," in IEEE Transactions on Industrial Electronics, vol. 64, no. 2, pp. 1113-1122, Feb. 2017.
[19]K. Kim, J. Kim, H. Kim, J. Ahn, H. H. Park, and S. Ahn, "Evaluation of electromagnetic field radiation from wireless power transfer electric vehicle," 2016 International Symposium on Antennas and Propagation (ISAP), Okinawa, 2016, pp. 40-41.
[20]T. Campi, F. Dionisi, S. Cruciani, V. De Santis, M. Feliziani, and F. Maradei, "Magnetic field levels in drones equipped with wireless power transfer technology," 2016 Asia-Pacific International Symposium on Electromagnetic Compatibility (APEMC), Shenzhen, 2016, pp. 544-547.
[21]S. H. Kang, J. H. Choi, F. J. Harackiewicz, and C. W. Jung, "Magnetic resonant three-coil WPT system between off/in-body for remote energy harvest," in IEEE Microwave and Wireless Components Letters, vol. 26, no. 9, pp. 741-743, Sept. 2016.
[22]G. Chi, Wireless power transfer overview, 2018.
[23]P. V. Nikitin, K. V. S. Rao, and S. Lazar, "An overview of near field UHF RFID," 2007 IEEE International Conference on RFID, Grapevine, TX, 2007, pp. 167-174.
[24]J. Appel-Hansen, "Centers of structures in electromagnetism--a critical analysis," in IEEE Transactions on Antennas and Propagation, vol. 30, no. 4, pp. 606-610, July 1982.
[25]A. Agarwal and J. Lang, Foundations of analog and digital electronic circuits: Morgan Kaufmann, pp. 692-699, 2005.
[26]I. Jeong, B. Jung, D. You, and H. Choi, "Analysis of S-Parameters in magnetic resonance WPT using superconducting coils," in IEEE Transactions on Applied Superconductivity, vol. 26, no. 3, pp. 1-4, April 2016, Art no. 0501004.
[27]S. R. Cove and M. Ordonez, "Wireless-power-transfer planar spiral winding design applying track width ratio," in IEEE Transactions on Industry Applications, vol. 51, no. 3, pp. 2423-2433, May-June 2015.
[28]U. Jow and M. Ghovanloo, "Design and optimization of printed spiral coils for efficient transcutaneous inductive power transmission," in IEEE Transactions on Biomedical Circuits and Systems, vol. 1, no. 3, pp. 193-202, Sept. 2007.
[29]R. Garg and I. J. Bahl, "Characteristics of coupled microstriplines," in IEEE Transactions on Microwave Theory and Techniques, vol. 27, no. 7, pp. 700-705, Jul. 1979.
[30]D. K. Cheng, Field and wave electromagnetics, 2nd Edition, Pearson Education Taiwan Ltd, pp. 63-66, 234-238, and 292-294, 2016.
[31]H. Wang, W. Li, and Z. Feng, "A compact and high-performance eddy-current sensor based on meander-spiral coil," in IEEE Transactions on Magnetics, vol. 51, no. 9, pp. 1-6, Sept. 2015, Art no. 4003806.
[32]E. L. Bronaugh, "Helmholtz coils for EMI immunity testing: stretching the uniform field area," Seventh International Conference on Electromagnetic Compatibility, 1990, York, UK, 1990, pp. 169-172.
[33]A. Hanks, "Magnetic Fields of Coils EX-9931," PASCO.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top