跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2024/12/02 19:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:但以理
研究生(外文):ZOUNDOU S. Daniel
論文名稱:在水稻强化系统(SRI)下監測益生菌對水稻田之影響
論文名稱(外文):Monitoring the effect of probiotic bacteria use on paddy rice field under the System of Rice Intensification (SRI)
指導教授:王裕民王裕民引用關係
指導教授(外文):Wang Yu-Min
口試委員:張東炯鍾文貴王裕民葉文正
口試委員(外文):Tung-Chiung ChangWen-Guey ChungWang Yu-MinYen Wen-Cheng
口試日期:2019-06-28
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:土壤與水工程國際碩士學位學程
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:94
中文關鍵詞:水稻水稻強化系统化肥益生菌
外文關鍵詞:RiceSystem of Rice Intensificationchemical fertilizerProbiotic
相關次數:
  • 被引用被引用:0
  • 點閱點閱:336
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
植物相關細菌是化學肥料的有前途的替代品,用於植物生長和以環 保方式提高產量。由於化肥的巨大應用,土壤的肥力,地下水和微生物都受 到這些工業產品的影響。該調查旨在確定能夠减少化學肥料使用的最佳益生 菌濃度,同時不影響水稻的生長和產量。此外,農民的高成本涉及需要調查 農業中的養分管理,以便向生產者提出有效的養分應用。在這種背景下,生 物技術早已報導了有益細菌做動,溶解和固定作物主要營養素方面的作用。 研究人員認為利用某些細菌的益處是減少礦物肥料使用的替代方案,顯然可 能傾向於農業的再生物化。那些被稱為植物生長促進根瘤菌(PGPR)或植 物益生菌(PPB)的細菌對於水稻種植的農民特別是在台灣的水稻強化系統 (SRI)中是有意義的。本研究的目的是評估不同數量的益生菌溶液(PS) 和不同推薦劑量的化學肥料(RDCF)劑量對濕季SRI下水稻生長和產量的影 響,保持最佳水深 3 厘米。該調查旨在確定能夠減少化學肥料使用而不影響水稻生長和產量的益生菌溶液的最佳用量。具體而言,本研究調查益生菌使 用對生理參數,產量組分及其在 SRI 下促進植物生長的能力的影響。為了實 現我們的目標,該實驗已在台灣國立屏東科技大學(NPUST)的灌溉稻田進 行。SRI 管理原則,如苗齡,株距,幼苗密度,種植持續時間和除草方法已 經徹底進行。五種不同的處理 T1(100%RDCF),T2(75%RDCF + 25% PS),T3(50%RDCF + 50%PS),T4(25%RDCF + 75%PS)和 T5(100 %PS)已經相互之間的比較 T1 被認為是對照治療。生長參數(株高,葉面 積指數(LAI),葉綠素含量)和產量組分(生產分蘗數,每穗粒數,千粒 重和穀粒產量)的數據已經過統計分析,並在處理之間進行了比較。應用 50 %RDCF + 50%PS的結果記錄了生長參數和每株穗數(12.33)的最高值,但 與其他處理沒有顯著差異。最終的穀粒重量最終記錄在 T1(28.67g)中,並 且與其餘處理顯著不同,因此影響了處理的穀物產量(噸/公頃)。然而,在 T1(6.14 噸/公頃)中記錄的高產量對於其餘處理仍然特別關閉,沒有任何顯 著差異。考慮到 T3 中的生長參數和產量(5.84 噸/公頃)性能以及細菌在磷 溶解和固氮中的能力,這種處理被認為是當前研究中的有效處理,並且建議 當作用於減輕化學肥料對環境影響的目的。
關鍵字:水稻,水稻強化系统,化肥,益生菌。
Plant associated bacteria are promising alternatives to chemical fertilizers for plant growth and yield improvement in an eco-friendly manner. Due to huge applications of chemical fertilizers, soils’ fertility, groundwater and certainly microorganisms are both affected by those industrial’s products. Moreover, its high costs for farmers involve the need to investigate the nutrients management in agriculture in order to propose efficient nutrients applications to producers. In this context, the biotechnology has longtime ago reported the ability of beneficial bacteria in its roles of mobilizing, solubilizing and fixing the main nutrients for crops. Exploiting benefits of some bacteria is seen by researchers as alternative to reduce mineral fertilizers use and evidently could tend to the re-biologization of the agriculture. Those bacteria known as Plant Growth promoting Rhizobacteria (PGPR) or Plant Probiotic Bacteria (PPB) are meaningfully for farmers in rice farming in particular in the System of Rice Intensification (SRI) in Taiwan. The objective of this study is to evaluate the effect of different amount of probiotic’s solution (PS) and different recommended doses of chemical fertilizers (RDCF) doses on the growth and yield of rice under SRI in wet season maintaining an optimum water depth of 3 cm. The investigation aims to determine the optimum amount of probiotic’s solution able to reduce the use of chemical fertilizers without compromising with the growth and yield of rice. Specifically, this study investigates the effects of probiotic use on the physiological parameters, the yield components and its ability to promote plants growth under SRI. To achieve our goals, the experiment has been conducted at irrigated rice field at the National Pingtung University of Science and Technology (NPUST) in Taiwan. SRI management principles such as seedling age, plant spacing, seedling densities, duration of planting and weeding method have been thoroughly conducted. Five different treatments T1 (100% RDCF), T2 (75% RDCF + 25% PS), T3 (50% RDCF + 50% PS), T4 (25% RDCF + 75% PS) and T5 (100% PS) have been compared between each other’s where T1 was considered as the control treatment. Data of growth parameters (plant height, leaf area index (LAI), chlorophyll content) and yield components (productive tillers number, number of grains per panicle, 1000 grains weight and grain yield) have been statistically analyzed and compared between treatments. Results of the application of 50% RDCF + 50% PS has recorded the highest values in growth parameters and in panicles number per plant (12.33) but were not significantly different with other treatments. The highest grains weight was finally recorded in T1 (28.67 g) and was significantly different with the rest of treatments which consequently has affected the grain yield (ton/ha) of treatments. However, the high yield recorded in T1 (6.14 ton/ha) remains particularly closed to the rest of treatments without any significant difference. Regardful of the growth parameters and yield (5.84 tons/ha) performance in T3 and bacteria’s abilities in phosphorus solubilization and nitrogen fixation this treatment is considered as an efficient treatment in the current investigation and is suggested to be used in the future purposes to mitigate chemical fertilizers effects on the environment.

Key words: Rice, System of Rice Intensification, chemical fertilizer, Probiotic.
摘要.....................................................I
Abstract...............................................III
Acknowledgements........................................VI
Table of contents......................................VII
List of Tables..........................................IX
List of Figures..........................................X
Acronyms and abbreviations.............................XII
Chapter 1 Introduction...................................1
1.1 Study statement......................................1
1.2 Research objectives..................................8
1.3 Study outline and research Flow chart................9
Chapter 2 Literature review.............................11
2.1 Rice production’ systems............................11
2.1.1 Conventional method (CM) and alternate wetting and drying irrigation (AWD).................................11
2.1.2 The system of rice intensification (SRI) in rice production..............................................14
2.2 Global agriculture fertilizers concern and perspectives in SRI.....................................23
2.3 Plants probiotic bacteria in rice cultivation.......28
2.4 Importance of the probiotic use in SRI..............34
2. 5 Limitations of the utilization Probiotic bacteria..36
Chapter 3 Materials and methods.........................37
3.1 Materials...........................................37
3.1.1 Experimental Site, Climate and Soil...............37
3.1.2 Experimental design...............................40
3.1.3 Land preparation..................................42
3.1.4 Crop installation and management..................43
3.2 Methods.............................................48
3.2.1 Irrigation and water management...................48
3.2. 2 Chemical fertilizers and probiotic’ management...51
3.2.3 Plant growth parameters (PGP) assessment..........56
3.2.4 Yield attributes and grain yield assessment.......60
3.2.5 Data analysis.....................................63
Chapter 4 Results and Discussions.......................64
4.1 Climatic conditions and water management subjected to the experiment..........................................64
4.1.1 Climatic conditions during the experiment.........64
4.1.2 Effects of temperature on the development of rice.67
4.1.3 weather’s effects on the development of rice......68
4.4.4 Comparison of plant height........................71
4.1.5 Comparison of leaves chlorophyll content..........74
4.1.6 Evolution of leaf area index (LAI) during the cropping season.........................................76
4.1.7 Yield attributes comparison between treatments....78
Chapter 5 Conclusion and Recommendations................85
5.1 conclusion..........................................85
5.2 recommendations.....................................87
References..............................................88
Appendix................................................93
Biographical Sketch of the Author.......................94
Abdullah, A., Kobayashi, H., Matsumura, I., & Ito, S. (2000). World Rice Demand Towards 2050 : Impact of Decreasing Demand of Per Capita Rice Consumption for China and India. Japan and East Asian Regionalism, (September), 1–18.
Adesemoye, A. O., & Kloepper, J. W. (2009). Plant-Microbes Interactions in Enhanced Fertilizer- Use Efficiency Plant-Microbes Interactions in Enhanced. https://doi.org/10.1007/s00253-009-2196-0
Awika, J. M. (2011). Major Cereal Grains Production and Use. Advances in Cereal Science Symposium Series: American Chemical Society, 1–13. https://doi.org/10.1021/bk-2011-1089.ch001
Aziez, A. F., Hanudin, E., & Harieni, S. (2018). Impact of water management on root morphology, growth and yield component of lowland rice varieties under the organic system of rice intensification. Journal of Degraded and Mining Lands Management, 5(2), 1035–1045. https://doi.org/10.15243/jdmlm.2018.052.1035
B.A.M. Bouman, H. Hengsdijk, B. Hardy, P.S. Bindraban, T.P. Tuong, and J. K. L. (2001). Water-wise rice production. Proceedings of the International Work- shop on Water-wise Rice Production. In International Rice Research Institute. Los Baños, Philippines: International Rice Research Institute.
Bargaz, A., Lyamlouli, K., Chtouki, M., Zeroual, Y., & Dhiba, D. (2018). Soil Microbial Resources for Improving Fertilizers Efficiency in an Integrated Plant Nutrient Management System. Frontiers in Microbiology, 9(July). https://doi.org/10.3389/fmicb.2018.01606
Barraquio, W. L., & Watanabe, I. (2012). Soil Science and Plant Nutrition Occurrence of aerobic nitrogen fixing bacteria in wetland and dryland plants. 0768. https://doi.org/10.1080/00380768.1981.10431262
Bouman, B. A. M., Peng, S., Castañeda, A. R., & Visperas, R. M. (2005). Yield and water use of irrigated tropical aerobic rice systems. Agricultural Water Management, 74(2), 87–105. https://doi.org/10.1016/j.agwat.2004.11.007
Cabangon, R. J., Tuong, T. P., Bouman, B. A. M., Feng, Y., Zhang, Z., Chen, C., & Wang, J. (2003). Irrigation management effects on yield and water productivity of hybrid, inbred and aerobic rice varieties in China. Sustainable Development of Water Resources and Management and Operation of Participatory Irrigation Organizations. Proceedings of the 2003 International Commission on Irrigation and Drainage (ICID) Asian Regional Workshop 10-12 Nov 2003, (January), 184–210. Retrieved from http://publications.iwmi.org/pdf/H033346.pdf
Carrijo, D. R., Lundy, M. E., & Linquist, B. A. (2017). Rice yields and water use under alternate wetting and drying irrigation: A meta-analysis. Field Crops Research, 203, 173–180. https://doi.org/10.1016/j.fcr.2016.12.002
Chang, Y. C., Uphoff, N. T., & Yamaji, E. (2016). A conceptual framework for eco-friendly paddy farming in Taiwan, based on experimentation with System of Rice Intensification (SRI) methodology. In Paddy and Water Environment (Vol. 14). https://doi.org/10.1007/s10333-015-0488-9
Chapagain, T., Riseman, A., & Yamaji, E. (2011). Achieving More with Less Water: Alternate Wet and Dry Irrigation (AWDI) as an Alternative to the Conventional Water Management Practices in Rice Farming. Journal of Agricultural Science, 3(3). https://doi.org/10.5539/jas.v3n3p3
FAO. (2014). Fao Statistical Programme. Retrieved from www.fao.org/publications
FAO. (2017). The future of food and agriculture: Trends and challenges. In The future of food and agriculture: Trends and challenges. https://doi.org/ISBN 978-92-5-109551-5
FAO. (2018). World Fertilzer Trends and Outlook to 2018 (Vol. 2). Food and Agriculture Organization of the united nations - Rome, 2015. www.fao.org/publications.
Fonteh, M., & Tabi, F. (2013). Effective water management practices in irrigated rice to ensure food security and mitigate climate change in a tropical climate. Agriculture and Biology Journal of North America, 4(3), 284–290. https://doi.org/10.5251/abjna.2013.4.3.284.290
Greaves, G. E., & Wang, Y. (2016). Assessment of FAO AquaCrop Model for Simulating Maize Growth and Productivity under Deficit Irrigation in a Tropical Environment. https://doi.org/10.3390/w8120557
Heffer, P., Gruère, A., & Roberts, T. (2017). Assessment of fertilizer use by crop at the global level 2014-2014/15. International Fertilizer Association and International Plant Nutrition Institute, (November 2017), 0–19. https://doi.org/10.1029/2001GB001811
Kaur, K. D., Jha, A., Sabikhi, L., & Singh, A. K. (2014). Significance of coarse cereals in health and nutrition: A review. Journal of Food Science and Technology, 51(8), 1429–1441. https://doi.org/10.1007/s13197-011-0612-9
Khan, M., Islam, M., Bari, A., & Akter, S. (2018). Effect of Fertilizer and Manure on the Movement of NPKS in Rice Soils of Madhupur Tract and Meghna River Floodplain. Bangladesh Agronomy Journal, 20(2), 123–133. https://doi.org/10.3329/baj.v20i2.37097
Khan, M. M. A., Haque, E., Paul, N. C., Khaleque, M. A., Al-Garni, S. M. S., Rahman, M., & Islam, M. T. (2017). Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria. Rice Science, 24(5), 264–273. https://doi.org/10.1016/j.rsci.2017.02.002
Kima, A. S., Chung, W. G., & Wang, Y. (2015). Improving Irrigated Lowland Rice Water Use Efficiency under Saturated Soil Culture for Adoption in Tropical Climate Conditions. (September 2014). https://doi.org/10.3390/w6092830
Kima, E. (2017). Using CROPWAT 8.0 for intermittent irrigation scheduling and yield estimation of paddy rice under rainy season cropping in Pingtung, southern Taiwan. National Pingtung University of Science and Technology.
Kissou, O. J. (2017). A study on performances comparison of Alternate Wetting and Drying ( AWD ) Technique and System of Rice Intensification ( SRI ), Southern Taiwan (National Pingtung University of Science and Technology; Wang Yu-Min, Ed.). https://doi.org/Master’s Thesis
Kubo, M., & Purevdorj, M. (2004). The Future of Rice Production and Consumption. Journal of Food Distribution Research, 35(1), 128–142. Retrieved from https://ageconsearch.umn.edu/bitstream/27145/1/35010128.pdf
KUMAR G., J. R. S. (2006). A Comparative Study of Nutrient Management in Paddy under SRI and Traditional Methods of Cultivation. DHARWAD University of Agricultural Sciences.
Kumar, M. (2013). SRI-A Method for Sustainable Intensification of Rice Production with Enhanced Water Productivity. Agrotechnology, 01(S11). https://doi.org/10.4172/2168-9881.S11-009
Kumar, V., Kumar, M., Sharma, S., & Prasad, R. (2017). Probiotics and plant health. Probiotics and Plant Health, (May), 1–600. https://doi.org/10.1007/978-981-10-3473-2
LaHue, G. T., Chaney, R. L., Adviento-Borbe, M. A., & Linquist, B. A. (2016). Alternate wetting and drying in high yielding direct-seeded rice systems accomplishes multiple environmental and agronomic objectives. Agriculture, Ecosystems and Environment, 229, 30–39. https://doi.org/10.1016/j.agee.2016.05.020
Maheshwari, D. K. (2012). Bacteria in agrobiology: Plant probiotics. In Bacteria in Agrobiology: Plant Probiotics (Vol. 9783642275). https://doi.org/10.1007/978-3-642-27515-9
Meena, R. N., Verma, V. K., & Singh, R. K. (2015). Effect of crop establishment methods and integrated nutrient management practices on nutrient uptake and quality attributes of. (April).
Menendez, E., & Garcia-Fraile, P. (2017). Plant probiotic bacteria: solutions to feed the world. AIMS Microbiology, 3(4), 747–748. https://doi.org/10.3934/microbiol.2017.4.747
Ndiiri, J. a, Mati, B. M., Home, P. G., Odongo, B., & Uphoff, N. (2017). Comparison of Yields of Paddy Rice Under System of Rice Intensification in Mwea, Kenya. American Journal of Plant Biology, 2(6), 49–60. https://doi.org/10.11648/j.ajpb.20170202.12
Oliver, M., Talukder, M., & Ahmed, M. (1970). Alternate wetting and drying irrigation for rice cultivation. Journal of the Bangladesh Agricultural University, 6(2), 409–414. https://doi.org/10.3329/jbau.v6i2.4841
Parmar, K. (2017). Isolation, Screening and Characterization of PGPR from Rhizosphere of Rice. International Journal of Pure & Applied Bioscience, 5(3), 264–270. https://doi.org/10.18782/2320-7051.2887
Pascual, V. J., & Wang, Y. M. (2017a). Impact of water management on rice varieties, yield, and water productivity under the system of rice intensification in Southern Taiwan. Water (Switzerland), 9(1), 1–15. https://doi.org/10.3390/w9010003
Pascual, V. J., & Wang, Y. M. (2017b). Utilizing rainfall and alternate wetting and drying irrigation for high water productivity in irrigated lowland paddy rice in Southern Taiwan. Plant Production Science, 20(1), 24–35. https://doi.org/10.1080/1343943X.2016.1242373
Raja, P., Uma, S., Gopal, H., & Govindarajan, K. (2006). Impact of bio inoculants consortium on rice root exudates, biological nitrogen fixation and plant growth. Journal of Biological Sciences, Vol. 6, pp. 815–823. https://doi.org/10.3923/jbs.2006.815.823
Rao, K. V. R., Gangwar, S., Keshri, R., Chourasia, L., Bajpai, A., & Soni, K. (2017). EFFECTS OF DRIP IRRIGATION SYSTEM FOR ENHANCING RICE (ORYZA SATIVA L.) YIELD UNDER SYSTEM OF RICE INTENSIFICATION MANAGEMENT. Applied Ecology and Environmental Research, 15(4), 487–495. https://doi.org/10.15666/aeer/1504_487495
Roy, R. N., Finck, A., & Blair, G. J. (2006). Plant nutrition for food security A guide for integrated nutrient management FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS. Retrieved from http://www.fao.org/3/a-a0443e.pdf
Shailendra Singh, G. G. (2015). Plant Growth Promoting Rhizobacteria (PGPR): Current and Future Prospects for Development of Sustainable Agriculture. Journal of Microbial & Biochemical Technology, 07(02), 96–102. https://doi.org/10.4172/1948-5948.1000188
Shouchi Yoshida, Douglas A. Forno, James H Cock, K. a G. (1976). Laboratory Manual for Physiological Studies of Rice. The International Rice Research Institute, 82. https://doi.org/10.1007/978-3-642-22067-8_9
Takada Hoshino, Y., Morimoto, S., Hayatsu, M., Nagaoka, K., Suzuki, C., Karasawa, T., … Akiyama, H. (2011). Effect of Soil Type and Fertilizer Management on Archaeal Community in Upland Field Soils. Microbes and Environments, 26(4), 307–316. https://doi.org/10.1264/jsme2.ME11131
Tapsoba, A., & Wang, Y. (2018). Water productivity and yield of Paddy Rice cultivation under AWD irrigation management in Pingtung , southern Taiwan. (7), 10–16.
Thakur, A. K., Rath, S., & Mandal, K. G. (2013). Differential responses of system of rice intensification (SRI) and conventional flooded-rice management methods to applications of nitrogen fertilizer. Plant and Soil, 370(1–2), 59–71. https://doi.org/10.1007/s11104-013-1612-5
Timmusk, S. (2017). Perspectives and Challenges of Microbial Application for Crop Improvement. (March). https://doi.org/10.3389/fpls.2017.00049
Uphoff, N. (2015). The System of Rice Intensification (SRI): Responses to Frequently Asked Questions. Norman Uphoff, SRI-Rice, B75 Mann Library Cornell University, Ithaca, New York 14853, USA.
Uphoff, Norman. (2006). The System of Rice Intensification (SRI) as a Methodology for Reducing Water Requirement in Irrigated Rice Production. Cornell International Institute for Food, Agriculture and Development, Ithaca, NY, USA, (1), 1–25.
Uphoff, Norman. (2012). Supporting food security in the 21st century through resource-conserving increases in agricultural production. Agriculture and Food Security, 1(1), 1–12. https://doi.org/10.1186/2048-7010-1-18
Van Oort, P. A. J., Saito, K., Tanaka, A., Amovin-Assagba, E., Van Bussel, L. G. J., Van Wart, J., … Wopereis, M. C. S. (2015). Assessment of rice self-sufficiency in 2025 in eight African countries. Global Food Security, 5, 39–49. https://doi.org/10.1016/j.gfs.2015.01.002
Vibhu Nayar, R. V. (2015). An Evaluation of the SRI on Increasing Yield, Water Productivity and Profitability; Experiences from TN-IAMWARM Project. Irrigation & Drainage Systems Engineering, 04(02), 2–7. https://doi.org/10.4172/2168-9768.1000137
Wen, T. H., Wang, Y. M., & Traore, S. (2017). A study on performances comparison of Alternate Wetting and Drying ( AWD ) Technique and System of Rice Intensification ( SRI ), Southern Taiwan. 1–21.
Wen, T. H., Wang, Y. M., & Traore, S. (2018). Using vegetation indices from multispectral imagery of UAV for modeling Chlorophyll. 1–18.
Yadav, S. (2018). Effect of Crop Establishment Method and Irrigation Schedule on Productivity and Water Use of Rice. In Journal of Pharmacognosy and Phytochemistry (Vol. 7).
Yang, C., & Yang, L. (2004). Rice root growth and nutrient uptake as influenced by organic manure in continuously and alternately flooded paddy soils. 70, 67–81. https://doi.org/10.1016/j.agwat.2004.05.003
ZHAO, L., WU, L., LI, Y., LU, X., ZHU, D., & UPHOFF, N. (2009). Influence of the System of Rice Intensification on Rice Yield and Nitrogen and Water Use Efficiency With Different N Application Rates. Experimental Agriculture, 45(3), 275–286. https://doi.org/10.1017/s0014479709007583
Zoundou S. Jean Paul. (2018). Investigating the growth parameters and yield attributes in different water regimes under the System of Rice Intensification (SRI). National Pingtung University of Science and Technology.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top