跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/28 09:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡曜文
研究生(外文):Yao-Wen Tsai
論文名稱:臺灣桃園國際機場與其他國家熱帶家蚊之親緣關係
論文名稱(外文):The phylogenetic analysis of Culex quinquefasciatus in Taiwan Taoyuan International Airport and their relationship with other countries
指導教授:蔡坤憲蔡坤憲引用關係鄧華真鄧華真引用關係
指導教授(外文):Kun-Hsien TsaiHwa-Jen Teng
口試委員:吳智文陳維鈞
口試委員(外文):Jhy-Wen WuWei-June Chen
口試日期:2019-07-08
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:公共衛生碩士學位學程
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:40
中文關鍵詞:親緣關係樹熱帶家蚊桃園機場監測沃爾巴克氏菌
DOI:10.6342/NTU201903745
相關次數:
  • 被引用被引用:0
  • 點閱點閱:296
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著全球交通越來越方便,病媒蚊透過航空器跨國傳播的機會也大幅提升,進而增加媒介病傳播風險。臺灣桃園國際機場(以下簡稱桃園機場)自2014年起,每年有超過十萬架次入境的飛機,使得病媒蚊的監測漸漸為重要的一環,由過去監測結果顯示,桃園機場主要捕獲的蚊種為熱帶家蚊,而航機掃蚊結果也以熱帶家蚊為主,但是熱帶家蚊是傳播西尼羅熱及絲蟲病的媒介,透過瞭解桃園機場是否有國外熱帶家蚊的入侵,可以提早執行病媒防治及加強監測,同時可以瞭解病媒防治的成效。
研究方法為利用熱帶家蚊的28S rDNA-D2 region、熱帶家蚊共生菌沃爾巴克氏菌的DNA片段pp-hC1A_5及沃爾巴克氏菌的噬菌體基因片段Gp15等三個標的物製做親緣關係樹,看是否能夠使國內及國外的熱帶家蚊分群。研究結果顯示,以28S rDNA-D2 region作為標的物製做的親緣關係樹可以用來區分來自印度及臺灣的熱帶家蚊;pp-hC1A_5則可以區分來自東南亞國家(緬甸、柬埔寨、菲律賓、泰國、新加坡、印尼及馬來西亞)及臺灣的熱帶家蚊;Gp15更可以用來區分來自東南亞國家、日本、與臺灣的熱帶家蚊。截至2017年3月的資料顯示,桃園機場的熱帶家蚊皆為臺灣本土的。如果後續有監測到外來的熱帶家蚊,就能迅速啟動病媒蚊防治工作,例如加強病媒蚊監測、港埠衛生清潔消毒及針對來自特定疫區的航空器執行噴藥滅蟲作業。使臺灣國際港埠公共衛生水準不僅達到國際衛生條例標準,更超越其他先進國家。
As global traffic has become more and more convenient, there were more than one hundred thousand flights coming from all over the world in Taiwan Taoyuan International Airport (TPE) since 2014. In previous study, a large proportion of mosquitoes caught in TPE were Culex quinquefasciatus, which can transmit West Nile virus and Wuchereria parasite. We want to know if there are foreign Cx. quinquefasciatus already dwell in TPE or not. If there are foreign ones, then we should adjust vector control programs and prevent outbreaks of disease. In order to distinguish the Cx. quinquefasciatus in TPE is native or not, Cx. quinquefasciatus from different Taiwan counties were compared to Cx. quinquefasciatus from foreign countries by using phylogenetic trees. There are several potential markers of phylogenetic trees may separate Taiwan’s native Cx. quinquefasciatus or foreign one, such as 28S rDNA-D2 region of Cx. quinquefasciatus, pp-hC1A_5 of Wolbachia pipientis (wPip), and Gp15 of WO prophage of wPip. To achieve that, we used polymerase chain reaction to amplify target DNA fragments, sequencing, and made the phylogenetic trees by MEGA 6.0 software.
The results show that phylogenetic trees by using three different markers can provide different resolution of phylogenetic relationship. In the marker of 28S rDNA-D2 region one, which only separate India from Taiwan, TPE, and Southeast Asia countries (Philippines, Cambodia, Myanmar, Thailand, Malaysia, Indonesia, and Singapore). Another marker, pp-hC1A_5, which can separate into two clades of phylogenetic tree, one contains samples from Taiwan, TPE, and Japan, the other includes samples from Southeast Asia countries. The other marker, Gp15, has the best resolution which shows it can separate Taiwan, Southeast Asia countries, and Japan into three different clades. We have detected no foreign Cx. quinquefasciatus in TPE until March, 2017. If there are foreign Cx. quinquefasciatus, we will conduct vector control, such as increasing the strength of vector surveillance and the health of port, even doing disinsection of certain origin of aircrafts. Making the level of public health of international port of Taiwan is far beyond the International Health Regulations.
誌謝 i
摘要 ii
Abstract iii
Contentes v
List of Figures vii
List of Tables viii
Chapter 1 Introduction 1
Ⅰ. Practicum Unit Features and Brief Introduction 1
Ⅱ. Research Purpose and Research Problems 1
Ⅲ. Framework and Hypotheses 2
Ⅳ. Literature Review 2
The Importance of Border Surveillance of Exotic Mosquito 2
Current situation of Mosquito Surveillance in Taiwan Taoyuan International Airport 3
The Importance of Culex quinquefasciatus 4
Culex pipiens complex’s Phylogeny between Japan and Taiwan 5
DNA Barcoding of Culicidae 6
DNA Markers for Separating Culex quinquefasciatus from Different Countries 6
Chapter 2 Methods 9
Mosquito Collection 9
Species Identification of Culex quinquefasciatus 9
DNA Extraction and Polymerase Chain Reaction 9
DNA Sequencing and Analysis 10
Chapter 3 Results 11
The Result of Mosquito Collection 11
Molecule Analysis of 28S rDNA-D2 Region Sequence 11
Molecule Analysis of pp-hC1A_5 Sequence 11
Molecule Analysis of Gp15 Sequence 12
The Situation in Taiwan Taoyuan International Airport is under Control 13
Chapter 4 Discussion 14
Figures 17
Tables 29
Reference 37
1.蔡曜文、黃健浩、陳美蓉、吳智文、巫坤彬:2014–2016年臺灣桃園國際機場港埠衛生監測之分析。疫情報導 2019;35:57-66。
2.Gratz NG, Steffen R, Cocksedge W. Why aircraft disinsection? Bull World Health Organ 2000;78:995-1004.
3.Scholte E-J, Braks M, Schaffner F. Aircraft-mediated transport of Culex quinquefasciatus. A case report. Journal of the European Mosquito Control Association 2010;28:208-12.
4.Sukehiro N, Kida N, Umezawa M, et al. First report on invasion of yellow fever mosquito, Aedes aegypti, at Narita International Airport, Japan in August 2012. Jpn J Infect Dis 2013;66:189-94.
5.Ibanez-Justicia A, Gloria-Soria A, den Hartog W, Dik M, Jacobs F, Stroo A. The first detected airline introductions of yellow fever mosquitoes (Aedes aegypti) to Europe, at Schiphol International airport, the Netherlands. Parasit Vectors 2017;10:603.
6.Bataille A, Cunningham AA, Cedeno V, et al. Evidence for regular ongoing introductions of mosquito disease vectors into the Galapagos Islands. Proc Biol Sci 2009;276:3769-75.
7.Gratz NG. Emerging and resurging vector-borne diseases. Annu Rev Entomol 1999;44:51–75.
8.Harbach R. Mosquito Taxonomic Inventory. Zootaxa 2017;1668:591-638.
9.Lien JC. Pictorial keys to the mosquitoes of Taiwan. Yi Hsien Publishing Co, Ltd 2004:178p.
10.Ciota AT, Kramer LD. Vector-virus interactions and transmission dynamics of West Nile virus. Viruses 2013;5:3021-47.
11.Reisen WK. Ecology of West Nile virus in North America. Viruses 2013;5:2079-105.
12.Jorge Cano, Maria P Rebollo, Nick Golding, et al. The global distribution and transmission limits of lymphatic filariasis: past and present. Parasites & Vectors 2014;7:466.
13.鄧華真、舒佩芸、嵇達德:日本與台灣病媒蚊及病媒蚊傳播之病原基因關係。行政院衛生署疾病管制局101-103年度科技研究發展計畫,2014。
14.Folmer, Black M, Hoeh W, Lutz R, Vrijenhoek R. DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Molecular Marine Biology and Biotechnology 1994;3:294-9.
15.Wang G, Li C, Guo X, et al. Identifying the main mosquito species in China based on DNA barcoding. PLoS One 2012;7:e47051.
16.Ashfaq M, Hebert PD, Mirza JH, Khan AM, Zafar Y, Mirza MS. Analyzing mosquito (Diptera: culicidae) diversity in Pakistan by DNA barcoding. PLoS One 2014;9:e97268.
17.Chan A, Chiang L-P, Hapuarachchi HC, et al. DNA barcoding complementing morphological identification of mosquito species in Singapore. Parasites & Vectors 2014;7.
18.Beebe NW, Whelan PI, Hurk AFVD, Ritchie SA, Corcoran S, Cooper RD. A Polymerase Chain Reaction-Based Diagnostic to Identify Larvae and Eggs of Container Mosquito Species from the Australian Region. J Med Entomol 2007;44:376-80.
19.Toma T, Miyagi I, Crabtree MB, Miller BR. Identification of Culex vishnui Subgroup (Diptera: Culicidae) Mosquitoes from the Ryukyu Archipelago, Japan: Development of a Species-Diagnostic Polymerase Chain Reaction Assay Based on Sequence Variation in Ribosomal DNA Spacers. J Med Entomol 2000;37:554-8.
20.Cook S, Diallo M, Sall AA, Cooper A, Holmes EC. Mitochondrial Markers for Molecular Identification of Aedes Mosquitoes (Diptera: Culicidae) Involved in Transmission of Arboviral Disease in West Africa. J Med Entomol 2005;42:19-28.
21.Sharpe RG, Harbach RE, Butlin RK. Molecular variation and phylogeny of members of the Minimus group of Anopheles subgenus Cellia (Diptera: Culicidae). Systematic Entomology 2000;25:263-72.
22.Simonato M, Martinez-Sanudo I, Cavaletto G, Santoiemma G, Saltarin A, Mazzon L. High genetic diversity in the Culex pipiens complex from a West Nile Virus epidemic area in Southern Europe. Parasit Vectors 2016;9:150.
23.Hasan AU, Suguri S, Ahmed SM, et al. Molecular phylogeography of Culex quinquefasciatus mosquitoes in central Bangladesh. Acta Trop 2009;112:106-14.
24.Francisco FO, Santiago LR, Mizusawa YM, Oldroyd BP, Arias MC. Population structuring of the ubiquitous stingless bee Tetragonisca angustula in southern Brazil as revealed by microsatellite and mitochondrial markers. Insect Sci 2017;24:877-90.
25.Wu Y, Li F, Li Z, et al. Microsatellite markers for Cryptolestes ferrugineus (Coleoptera: Laemophloeidae) and other Cryptolestes species. Bull Entomol Res 2016;106:154-60.
26.Atiama M, Delatte H, Deguine JP. Isolation and Characterization of 11 Polymorphic Microsatellite Markers Developed for Orthops palus (Heteroptera: Miridae). J Insect Sci 2016;16.
27.Wilke ABB, de Carvalho GC, Marrelli MT. Microgeographic Population Structuring of Culex quinquefasciatus (Diptera: Culicidae) From Sao Paulo, Brazil. J Med Entomol 2017;54:1582-8.
28.Sakthivelkumar S, Ramaraj P, Veeramani V, Janarthanan S. Genetic diversity based on 28S rDNA sequences among populations of Culex quinquefasciatus collected at different locations in Tamil Nadu, India. Trop Biomed 2015;32 (3):434-43.9.
29.Sharma AK, Mendki MJ, Tikar SN, et al. Molecular phylogenetic study of Culex quinquefasciatus mosquito from different geographical regions of India using 16S rRNA gene sequences. Acta Trop 2010;116:89-94.
30.Awadalla PA, Eyre-Walker J, Maynard S. Linkage disequilibrium and recombination in hominid mitochondrial DNA. Science 1999;286:2524–5.
31.Drake JW. A constant rate of spontaneous mutation in DNA-based microbes. Proc Natl Acad Sci 1991;88:7160-4.
32.Drake JW, Charlesworth B, Charlesworth D, Crow JF. Rates of Spontaneous Mutation. Genetics Society of America 1998;148:1667–86.
33.Werren JH, Baldo L, Clark ME. Wolbachia: master manipulators of invertebrate biology. Nat Rev Microbiol 2008;6:741-51.
34.Petridis M, Chatzidimitriou D. Characterization of an intergenic polymorphic site (pp-hC1A_5) in Wolbachia pipientis (wPip). Mol Ecol Resour 2011;11:753-6.
35.Masui S, Kamoda S, Sasaki T, Ishikawa H. Distribution and evolution of bacteriophage WO in Wolbachia, the endosymbiont causing sexual alterations in arthropods. J Mol Evol 2000;51:491-7.
36.Bordenstein SR, Wernegreen JJ. Bacteriophage flux in endosymbionts (Wolbachia): infection frequency, lateral transfer, and recombination rates. Mol Biol Evol 2004;21:1981-91.
37.Klasson L, Walker T, Sebaihia M, et al. Genome evolution of Wolbachia strain wPip from the Culex pipiens group. Mol Biol Evol 2008;25:1877-87.
38.Fujii Y, Kubo T, Ishikawa H, Sasaki T. Isolation and characterization of the bacteriophage WO from Wolbachia, an arthropod endosymbiont. Biochem Biophys Res Commun 2004;317:1183-8.
39.Duron O, Fort P, Weill M. Hypervariable prophage WO sequences describe an unexpected high number of Wolbachia variants in the mosquito Culex pipiens. Proc Biol Sci 2006;273:495-502.
40.連日清、林慧中、翁明輝、嵇達德:臺灣蚊種檢索。第一版。台北縣新店市:藝軒出版社,2004;79。
41.Smith JL, Fonseca DM. Rapid assays for identification of members of the Culex (Culex) pipiens complex, their hybrids, and other sibling species (Diptera culicidae). Am J Trop Med Hyg 2004;70:339-45.
42.Kasai S, Komagata O, Tomita T, et al. PCR-Based Identification of Culex pipiens complex collected in Japan. Jpn J Infect Dis 2008;61:184-91.
43.Thompson J, Gibson T, Higgins D. Multiple sequence alignment using ClustalW and ClustalX. Curr Protoc Bioinformatics Chapter 2:Unit 23 2002.
44.Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013;30:2725-9.
45.Vincze T, Posfai J, Roberts RJ. NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Research 2003;31:3688-91.
46.蘇信維、黃健浩、吳怡君、何麗莉:2005–2013年臺灣桃園國際機場之航機病媒蚊監測。疫情報導 2016;32。
47.Shaikevich EV, Zakharov IA. Coevolution of symbiotic bacteria Wolbachia and host mtDNA in Russian populations of the Culex pipiens mosquito complex. Russian Journal of Genetics 2014;50:1234-7.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top