(35.172.150.239) 您好!臺灣時間:2019/11/14 04:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:盧泰宇
研究生(外文):Tai-Yu Lu
論文名稱:觀看自然刺激下之人腦血液動力信號同步性受低階視覺特性影響分析
論文名稱(外文):The Effect of Low-Level Visual Stimulation Features on Inter-Subject Human Brain Hemodynamics Synchronization during Naturalistic Viewing
指導教授:鍾孝文林發暄
口試委員:郭文瑞
口試日期:2017-12-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:生醫電子與資訊學研究所
學門:工程學門
學類:生醫工程學類
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:32
中文關鍵詞:受試者間相關係數分析大腦同步性功能性磁振造影自然刺激低階刺激影像重疊競爭合作
DOI:10.6342/NTU201900010
相關次數:
  • 被引用被引用:0
  • 點閱點閱:9
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
跨受試者間血氧動力學反應的同步性量測,已廣泛應用於檢測人類受自然和複雜刺激下時大腦活動的區域。使用此種分析方式,在較高階區域的同步性通常不如感覺及其關聯區域。考慮到感覺刺激的分層處理,處理低階或高階特徵的腦區皆會產生跨受試者間的同步性。然而,認知神經科學的研究主要關心後者,故期望能去除由前者所導致的同步大腦活動,從而獨立出負責高階反應活動的腦區。
本實驗中,我們藉由控制視覺刺激以找出大腦負責處理低階視覺刺激相關的腦區。同時,我們讓受試者透過影片中的角色代入產生高階的大腦意識活動(競爭與合作)。我們讓兩個受試者分別從兩個不同的視角的錄影觀察同一場遊戲,並找出兩個受試者之間功能性磁振造影訊號的相關性與錄影畫面相似度有關的腦區。我們藉由錄影畫面的重疊率來測量兩個不同視角之間畫面的相似性。我們假設這些大腦區域與低階視覺處理有關。之後我們通過聚類分析找到這些區域的特徵訊號,隨後以線性回歸方式去除這些特徵訊號後計算受試者間的大腦活動相關性。
在去除特徵訊號之後,受試者之間大腦活動的同步性在視覺和側向枕葉皮質上顯著減少,但在扣帶皮層,額葉皮質和島葉中顯著增加。實驗結果表明以畫面的重疊性來量化受試者在觀察自然刺激時相關特徵的可行性。
Measuring synchronized hemodynamic responses across subjects has been widely used to detect active human brain areas under naturalistic and complex stimuli. Using this analysis, higher order areas are typically less synchronized than sensory and association areas. Considering the hierarchical processing of sensory stimuli, synchronized brain activity can occur at brain areas dynamically processing either low-level or high-level features. To isolate the latter for which cognitive studies are mainly interested in, it is important to suppress the synchronized brain activity due to the former causes.
Here we proposed an experiment by controlling the effect due to low-level visual stimulation. We prepared montage movie clips of the same session of a video game but from four different perspectives. The subjects were instructed to project themselves into the players in the movie, including imagining cooperative and competitive behaviors with others. We first identified brain areas where the correlated fMRI signals between two subjects during viewing the movie but from two distinct perspectives related to the similarity between two perspectives. The similarity between two distinct perspectives was measured by the degree of overlapped field-of-view (FOV) of video frames. These brain areas were hypothesized to be related to low-level processing. The characteristic time courses at these areas were then found by clustering analysis. Inter-subject correlation (ISC) was subsequently calculated after removing these characteristic time courses by regression.
The synchronization of brain activity between subjects showed significantly reduced at visual and lateral occipital cortex, but significantly increased at cingulate cortex, frontal cortex and insula. The result suggested the feasibility of using the overlapped field-of-FOV to quantify low-level visual related features during naturalistic viewing between subjects.
口試委員審定書 i
致謝 ii
摘要 iii
Abstract iv
CONTENTS vi
LIST OF FIGURES viii
LIST OF TABLES ix
Chapter 1 Introduction 1
Chapter 2 Materials and Methods 4
2.1 Subject 4
2.2 MRI data acquisition 4
2.3 Material 5
2.4 Data analysis 7
2.4.1 Overlapped FOV Analysis 7
2.4.2 fMRI data preprocessing 8
2.4.3 Inter-subject correlation (ISC) 9
2.4.4 The effect of low-level visual stimulation features 11
Chapter 3 Results 13
3.1 Results of overlapped FOV analysis 13
3.2 Brain regions participating in low-level visual stimulation 14
3.3 ISC results 16
3.3.1 Cooperative condition 16
3.3.2 Competitive condition 18
3.3.3 Contrast between cooperative and competitive condition 20
Chapter 4 Discussion 23
4.1 Brain regions participating in low-level visual stimulation 24
4.2 Brain regions involve in cooperation and competition 26
4.3 Limitation 27
Chapter 5 Conclusion 29
REFERENCE 30
Abrams, D.A., Ryali, S., Chen, T., Chordia, P., Khouzam, A., Levitin, D.J., Menon, V., 2013. Inter-subject synchronization of brain responses during natural music listening. The European journal of neuroscience 37, 1458-1469.
Amodio, D.M., Frith, C.D., 2006. Meeting of minds: the medial frontal cortex and social cognition. Nature Reviews Neuroscience 7, 268.
Beckmann, C.F., Jenkinson, M., Smith, S.M., 2003. General multilevel linear modeling for group analysis in FMRI. Neuroimage 20, 1052-1063.
Beckmann, C.F., Smith, S.M., 2004. Probabilistic independent component analysis for functional magnetic resonance imaging. IEEE Transactions on Medical Imaging 23, 137-152.
Behrens, T.E.J., Hunt, L.T., Rushworth, M.F.S., 2009. The Computation of Social Behavior. Science 324, 1160.
Behrens, T.E.J., Hunt, L.T., Woolrich, M.W., Rushworth, M.F.S., 2008. Associative learning of social value. Nature 456, 245.
Belitski, A., Gretton, A., Magri, C., Murayama, Y., Montemurro, M.A., Logothetis, N.K., Panzeri, S., 2008. Low-Frequency Local Field Potentials and Spikes in Primary Visual Cortex Convey Independent Visual Information. The Journal of Neuroscience 28, 5696-5709.
Courtney, S.M., Petit, L., Maisog, J.M., Ungerleider, L.G., Haxby, J.V., 1998. An Area Specialized for Spatial Working Memory in Human Frontal Cortex. Science 279, 1347.
Decety, J., Jackson, P.L., Sommerville, J.A., Chaminade, T., Meltzoff, A.N., 2004. The neural bases of cooperation and competition: an fMRI investigation. Neuroimage 23, 744-751.
Fisher, R.A., 1915. Frequency Distribution of the Values of the Correlation Coefficient in Samples from an Indefinitely Large Population. Biometrika 10, 507-521.
Greene, J., Haidt, J., 2002. How (and where) does moral judgment work? Trends Cogn Sci 6, 517-523.
Halsband, U., Passingham, R.E., 1985. Premotor cortex and the conditions for movement in monkeys (Macaca fascicularis). Behavioural Brain Research 18, 269-277.
Hasson, U., Furman, O., Clark, D., Dudai, Y., Davachi, L., 2008. Enhanced Intersubject Correlations during Movie Viewing Correlate with Successful Episodic Encoding. Neuron 57, 452-462.
Hasson, U., Malach, R., Heeger, D.J., 2010. Reliability of cortical activity during natural stimulation. Trends Cogn Sci 14, 40-48.
Hasson, U., Nir, Y., Levy, I., Fuhrmann, G., Malach, R., 2004. Intersubject synchronization of cortical activity during natural vision. Science 303, 1634-1640.
Herrmann, C.S., 2001. Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental Brain Research 137, 346-353.
Jääskeläinen, I.P., Koskentalo, K., Balk, M.H., Autti, T., Kauramäki, J., Pomren, C., Sams, M., 2008. Inter-Subject Synchronization of Prefrontal Cortex Hemodynamic Activity During Natural Viewing. The Open Neuroimaging Journal 2, 14-19.
Jaaskelainen, I.P., Pajula, J., Tohka, J., Lee, H.J., Kuo, W.J., Lin, F.H., 2016. Brain hemodynamic activity during viewing and re-viewing of comedy movies explained by experienced humor. Sci Rep 6, 27741.
Jonides, J., Smith, E.E., Koeppe, R.A., Awh, E., Minoshima, S., Mintun, M.A., 1993. Spatial working memory in humans as revealed by PET. Nature 363, 623.
Kauppi, J.P., Jaaskelainen, I.P., Sams, M., Tohka, J., 2010. Inter-subject correlation of brain hemodynamic responses during watching a movie: localization in space and frequency. Front Neuroinform 4, 5.
King-Casas, B., Tomlin, D., Anen, C., Camerer, C.F., Quartz, S.R., Montague, P.R., 2005. Getting to Know You: Reputation and Trust in a Two-Person Economic Exchange. Science 308, 78.
Liu, N., Mok, C., Witt, E.E., Pradhan, A.H., Chen, J.E., Reiss, A.L., 2016. NIRS-Based Hyperscanning Reveals Inter-brain Neural Synchronization during Cooperative Jenga Game with Face-to-Face Communication. Frontiers in Human Neuroscience 10.
Logothetis, N.K., 2003. The Underpinnings of the BOLD Functional Magnetic Resonance Imaging Signal. The Journal of Neuroscience 23, 3963-3971.
Mechler, F., Victor, J.D., Purpura, K.P., Shapley, R., 1998. Robust Temporal Coding of Contrast by V1 Neurons for Transient But Not for Steady-State Stimuli. The Journal of Neuroscience 18, 6583-6598.
Mellet, E., Tzourio, N., Crivello, F., Joliot, M., Denis, M., Mazoyer, B., 1996. Functional Anatomy of Spatial Mental Imagery Generated from Verbal Instructions. The Journal of Neuroscience 16, 6504.
Moll, L., Kuypers, H.G., 1977. Premotor cortical ablations in monkeys: contralateral changes in visually guided reaching behavior. Science 198, 317.
Ogawa, S., Lee, T.-M., Kay, A.R., Tank, D.W., 1990. Brain magnetic resonance imaging with contrast dependent on blood oxygenation. Proceedings of the National Academy of Sciences 87, 9868-9872.
Raichle, M.E., Mintun, M.A., 2006. BRAIN WORK AND BRAIN IMAGING. Annual Review of Neuroscience 29, 449-476.
Saxe, R., 2006. Uniquely human social cognition. Current Opinion in Neurobiology 16, 235-239.
Tanaka, S., Honda, M., Sadato, N., 2005. Modality-Specific Cognitive Function of Medial and Lateral Human Brodmann Area 6. The Journal of Neuroscience 25, 496.
Tomlin, D., Kayali, M.A., King-Casas, B., Anen, C., Camerer, C.F., Quartz, S.R., Montague, P.R., 2006. Agent-Specific Responses in the Cingulate Cortex During Economic Exchanges. Science 312, 1047.
Weinrich, M., Wise, S.P., 1982. The premotor cortex of the monkey. The Journal of Neuroscience 2, 1329.
Yao, H., Shi, L., Han, F., Gao, H., Dan, Y., 2007. Rapid learning in cortical coding of visual scenes. Nat Neurosci 10, 772-778.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔