|
[1]E. Niedermeyer, and F. H. L. da Silva, Electroencephalography: Basic Principles, Clinical Applications, and Related Fields: Lippincott Williams & Wilkins, 2005. [2]A. W. Toga, and J. C. Mazziotta, Brain Mapping: The Methods: Elsevier Science, 2002. [3]P. L. Nunez, Electric Fields of the Brain: The Neurophysics of EEG: Oxford University Press, 1981. [4]R. Ordidge, P. Mansfield, and R. Coupland, “Rapid biomedical imaging by NMR,” The British journal of radiology, vol. 54, no. 646, pp. 850-855, 1981. [5]N. K. Logothetis, “What we can do and what we cannot do with fMRI,” Nature, vol. 453, no. 7197, pp. 869-878, 2008. [6]R. J. Huster, S. Debener, T. Eichele, and C. S. Herrmann, “Methods for simultaneous EEG-fMRI: an introductory review,” The Journal of neuroscience, vol. 32, no. 18, pp. 6053-6060, 2012. [7]C. Mulert, and L. Lemieux, EEG - fMRI: Physiological Basis, Technique, and Applications: Springer Berlin Heidelberg, 2009. [8]G. Lantz, R. G. De Peralta, L. Spinelli, M. Seeck, and C. Michel, “Epileptic source localization with high density EEG: how many electrodes are needed?,” Clinical neurophysiology, vol. 114, no. 1, pp. 63-69, 2003. [9]M. A. Lindquist, J. M. Loh, L. Y. Atlas, and T. D. Wager, “Modeling the hemodynamic response function in fMRI: efficiency, bias and mis-modeling,” Neuroimage, vol. 45, no. 1, pp. S187-S198, 2009. [10]R. B. Buxton, E. C. Wong, and L. R. Frank, “Dynamics of blood flow and oxygenation changes during brain activation: The balloon model,” Magnetic Resonance in Medicine, vol. 39, no. 6, pp. 855-864, 1998. [11]M. G. Philiastides, and P. Sajda, “EEG-informed fMRI reveals spatiotemporal characteristics of perceptual decision making,” Journal of Neuroscience, vol. 27, no. 48, pp. 13082-13091, 2007. [12]H. Laufs, A. Kleinschmidt, A. Beyerle, E. Eger, A. Salek-Haddadi, C. Preibisch, and K. Krakow, “EEG-correlated fMRI of human alpha activity,” Neuroimage, vol. 19, no. 4, pp. 1463-1476, 2003. [13]M. Ullsperger, and S. Debener, Simultaneous EEG and fMRI: Recording, Analysis, and Application: Oxford University Press, 2010. [14]F. Babiloni, F. Carducci, C. Del Gratta, C. Babiloni, G. Roberti, G. Romani, C. Caltagirone, P. Rossini, and A. Urbano, "Combined high resolution EEG and functional MRI data for modeling of cortical sources of human movement-related potentials." pp. 2135-2138. [15]F. Babiloni, F. Carducci, F. Cincotti, C. Del Gratta, G. Roberti, G. Romani, P. Rossini, and C. Babiloni, “Integration of high resolution EEG and functional magnetic resonance in the study of human movement-related potentials,” Methods Archive, vol. 39, no. 2, pp. 179-182, 2000. [16]W. Ou, A. Nummenmaa, J. Ahveninen, J. W. Belliveau, M. S. Hämäläinen, and P. Golland, “Multimodal functional imaging using fMRI-informed regional EEG/MEG source estimation,” Neuroimage, vol. 52, no. 1, pp. 97-108, 2010. [17]P. A. Valdes‐Sosa, J. M. Sanchez‐Bornot, R. C. Sotero, Y. Iturria‐Medina, Y. Aleman‐Gomez, J. Bosch‐Bayard, F. Carbonell, and T. Ozaki, “Model driven EEG/fMRI fusion of brain oscillations,” Human brain mapping, vol. 30, no. 9, pp. 2701-2721, 2009. [18]M. Rosa, J. Daunizeau, and K. Friston, “EEG-fMRI integration: a critical review of biophysical modeling and data analysis approaches,” Journal of integrative neuroscience, vol. 9, no. 04, pp. 453-476, 2010. [19]J. J. Riera, and A. Sumiyoshi, “Brain oscillations: ideal scenery to understand the neurovascular coupling,” Current opinion in neurology, vol. 23, no. 4, pp. 374-381, 2010. [20]S. Debener, M. Ullsperger, M. Siegel, and A. K. Engel, “Single-trial EEG–fMRI reveals the dynamics of cognitive function,” Trends in cognitive sciences, vol. 10, no. 12, pp. 558-563, 2006. [21]G. Sammer, C. Blecker, H. Gebhardt, P. Kirsch, R. Stark, and D. Vaitl, “Acquisition of typical EEG waveforms during fMRI: SSVEP, LRP, and frontal theta,” Neuroimage, vol. 24, no. 4, pp. 1012-1024, 2005. [22]J. A. Caldwell, B. Prazinko, and J. L. Caldwell, “Body posture affects electroencephalographic activity and psychomotor vigilance task performance in sleep-deprived subjects,” Clinical Neurophysiology, vol. 114, no. 1, pp. 23-31, 2003. [23]J. Jorge, F. Grouiller, Ö. Ipek, R. Stoermer, C. M. Michel, P. Figueiredo, W. Van Der Zwaag, and R. Gruetter, “Simultaneous EEG–fMRI at ultra-high field: Artifact prevention and safety assessment,” NeuroImage, vol. 105, pp. 132-144, 2015. [24]P. J. Allen, G. Polizzi, K. Krakow, D. R. Fish, and L. Lemieux, “Identification of EEG events in the MR scanner: the problem of pulse artifact and a method for its subtraction,” Neuroimage, vol. 8, no. 3, pp. 229-39, Oct, 1998. [25]P. J. Allen, O. Josephs, and R. Turner, “A method for removing imaging artifact from continuous EEG recorded during functional MRI,” Neuroimage, vol. 12, no. 2, pp. 230-9, Aug, 2000. [26]X. Wan, K. Iwata, J. Riera, M. Kitamura, and R. Kawashima, “Artifact reduction for simultaneous EEG/fMRI recording: Adaptive FIR reduction of imaging artifacts,” Clinical Neurophysiology, vol. 117, no. 3, pp. 681-692, 3//, 2006. [27]R. Ordidge, P. Mansfield, M. Doyle, and R. Coupland, “Real time movie images by NMR,” The British journal of radiology, vol. 55, no. 658, pp. 729-733, 1982. [28]H. Berger, “Über das Elektrenkephalogramm des Menschen,” European Archives of Psychiatry and Clinical Neuroscience, vol. 94, no. 1, pp. 16-60, 1931. [29]A. I. Klistorner, S. L. Graham, J. R. Grigg, and F. A. Billson, “Multifocal topographic visual evoked potential: improving objective detection of local visual field defects,” Investigative ophthalmology & visual science, vol. 39, no. 6, pp. 937-950, 1998. [30]R. G. Eason, “Visual evoked potential correlates of early neural filtering during selective attention,” Bulletin of the Psychonomic Society, vol. 18, no. 4, pp. 203-206, 1981. [31]F. Di Russo, A. Martínez, M. I. Sereno, S. Pitzalis, and S. A. Hillyard, “Cortical sources of the early components of the visual evoked potential,” Human brain mapping, vol. 15, no. 2, pp. 95-111, 2002. [32]E. Courchesne, S. A. Hillyard, and R. Galambos, “Stimulus novelty, task relevance and the visual evoked potential in man,” Electroencephalography and Clinical Neurophysiology, vol. 39, no. 2, pp. 131-143, 8//, 1975. [33]V. P. Clark, S. Fan, and S. A. Hillyard, “Identification of early visual evoked potential generators by retinotopic and topographic analyses,” Human brain mapping, vol. 2, no. 3, pp. 170-187, 1994. [34]A. Hoffmann, L. Jäger, K. Werhahn, M. Jaschke, S. Noachtar, and M. Reiser, “Electroencephalography during functional echo‐planar imaging: detection of epileptic spikes using post‐processing methods,” Magnetic resonance in medicine, vol. 44, no. 5, pp. 791-798, 2000. [35]G. Bonmassar, P. L. Purdon, I. P. Jääskeläinen, K. Chiappa, V. Solo, E. N. Brown, and J. W. Belliveau, “Motion and ballistocardiogram artifact removal for interleaved recording of EEG and EPs during MRI,” Neuroimage, vol. 16, no. 4, pp. 1127-1141, 2002. [36]R. K. Niazy, C. F. Beckmann, G. D. Iannetti, J. M. Brady, and S. M. Smith, “Removal of FMRI environment artifacts from EEG data using optimal basis sets,” NeuroImage, vol. 28, no. 3, pp. 720-737, 11/15/, 2005. [37]D. Maziero, T. R. Velasco, N. Hunt, E. Payne, L. Lemieux, C. E. Salmon, and D. W. Carmichael, “Towards motion insensitive EEG-fMRI: Correcting motion-induced voltages and gradient artefact instability in EEG using an fMRI prospective motion correction (PMC) system,” NeuroImage, vol. 138, pp. 13-27, 2016. [38]G. Bonmassar, D. P. Schwartz, A. K. Liu, K. K. Kwong, A. M. Dale, and J. W. Belliveau, “Spatiotemporal brain imaging of visual-evoked activity using interleaved EEG and fMRI recordings,” Neuroimage, vol. 13, no. 6 Pt 1, pp. 1035-43, Jun, 2001. [39]R. I. Goldman, J. M. Stern, J. Engel Jr, and M. S. Cohen, “Simultaneous EEG and fMRI of the alpha rhythm,” Neuroreport, vol. 13, no. 18, pp. 2487, 2002. [40]W. X. Yan, K. J. Mullinger, M. J. Brookes, and R. Bowtell, “Understanding gradient artefacts in simultaneous EEG/fMRI,” Neuroimage, vol. 46, no. 2, pp. 459-471, 2009. [41]H. Mandelkow, P. Halder, P. Boesiger, and D. Brandeis, “Synchronization facilitates removal of MRI artefacts from concurrent EEG recordings and increases usable bandwidth,” Neuroimage, vol. 32, no. 3, pp. 1120-1126, 2006. [42]P. Ritter, F. Freyer, G. Curio, and A. Villringer, “High-frequency (600 Hz) population spikes in human EEG delineate thalamic and cortical fMRI activation sites,” Neuroimage, vol. 42, no. 2, pp. 483-490, 2008. [43]M. Barth, F. Breuer, P. J. Koopmans, D. G. Norris, and B. A. Poser, “Simultaneous multislice (SMS) imaging techniques,” Magnetic resonance in medicine, vol. 75, no. 1, pp. 63-81, 2016. [44]F. H. Lin, L. L. Wald, S. P. Ahlfors, M. S. Hämäläinen, K. K. Kwong, and J. W. Belliveau, “Dynamic magnetic resonance inverse imaging of human brain function,” Magnetic resonance in medicine, vol. 56, no. 4, pp. 787-802, 2006. [45]L. Chen, A. T. Vu, J. Xu, S. Moeller, K. Ugurbil, E. Yacoub, and D. A. Feinberg, “Evaluation of highly accelerated simultaneous multi-slice EPI for fMRI,” NeuroImage, vol. 104, pp. 452-459, 2015/01/01/, 2015. [46]K. P. Pruessmann, M. Weiger, M. B. Scheidegger, and P. Boesiger, “SENSE: Sensitivity encoding for fast MRI,” Magnetic Resonance in Medicine, vol. 42, no. 5, pp. 952-962, 1999. [47]D. A. Feinberg, and K. Setsompop, “Ultra-fast MRI of the human brain with simultaneous multi-slice imaging,” Journal of Magnetic Resonance, vol. 229, pp. 90-100, 2013/04/01/, 2013. [48]A. M. Norcia, L. G. Appelbaum, J. M. Ales, B. R. Cottereau, and B. Rossion, “The steady-state visual evoked potential in vision research: a review,” Journal of vision, vol. 15, no. 6, pp. 4-4, 2015. [49]C. S. Herrmann, “Human EEG responses to 1–100 Hz flicker: resonance phenomena in visual cortex and their potential correlation to cognitive phenomena,” Experimental brain research, vol. 137, no. 3-4, pp. 346-353, 2001. [50]A. Bayram, Z. Bayraktaroglu, E. Karahan, B. Erdogan, B. Bilgic, M. Özker, I. Kasikci, A. D. Duru, A. Ademoglu, C. Öztürk, K. Arikan, N. Tarhan, and T. Demiralp, “Simultaneous EEG/fMRI Analysis of the Resonance Phenomena in Steady-State Visual Evoked Responses,” Clinical EEG and Neuroscience, vol. 42, no. 2, pp. 98-106, April 1, 2011, 2011. [51]K. J. Mullinger, P. Castellone, and R. Bowtell, “Best current practice for obtaining high quality EEG data during simultaneous fMRI,” Journal of visualized experiments: JoVE, no. 76, 2013. [52]B. Fischl, “FreeSurfer,” Neuroimage, vol. 62, no. 2, pp. 774-781, 2012. [53]A. Gramfort, M. Luessi, E. Larson, D. A. Engemann, D. Strohmeier, C. Brodbeck, L. Parkkonen, and M. S. Hämäläinen, “MNE software for processing MEG and EEG data,” NeuroImage, vol. 86, pp. 446-460, 2014/02/01/, 2014. [54]M. Stenroos, V. Mäntynen, and J. Nenonen, “A Matlab library for solving quasi-static volume conduction problems using the boundary element method,” Computer methods and programs in biomedicine, vol. 88, no. 3, pp. 256-263, 2007. [55]M. Stenroos, and A. Nummenmaa, “Incorporating and Compensating Cerebrospinal Fluid in Surface-Based Forward Models of Magneto- and Electroencephalography,” PLOS ONE, vol. 11, no. 7, pp. e0159595, 2016. [56]K. J. Friston, “Functional and Effective Connectivity: A Review,” Brain Connectivity, vol. 1, no. 1, pp. 13-36, 2011/01/01, 2011. [57]N. Roehri, J.-M. Lina, J. C. Mosher, F. Bartolomei, and C.-G. Bénar, “Time-frequency strategies for increasing high-frequency oscillation detectability in intracerebral EEG,” IEEE Transactions on Biomedical Engineering, vol. 63, no. 12, pp. 2595-2606, 2016. [58]S. Burnos, P. Hilfiker, O. Sürücü, F. Scholkmann, N. Krayenbühl, T. Grunwald, and J. Sarnthein, “Human intracranial high frequency oscillations (HFOs) detected by automatic time-frequency analysis,” PLoS One, vol. 9, no. 4, pp. e94381, 2014. [59]P. Goupillaud, A. Grossmann, and J. Morlet, “Cycle-octave and related transforms in seismic signal analysis,” Geoexploration, vol. 23, no. 1, pp. 85-102, 1984/10/01/, 1984. [60]C. F. Beckmann, M. Jenkinson, and S. M. Smith, “General multilevel linear modeling for group analysis in FMRI,” Neuroimage, vol. 20, no. 2, pp. 1052-1063, 2003. [61]Y. Benjamini, and Y. Hochberg, “Controlling the false discovery rate: a practical and powerful approach to multiple testing,” Journal of the royal statistical society. Series B (Methodological), pp. 289-300, 1995. [62]S. Zhang, X. Han, X. Chen, Y. Wang, S. Gao, and X. Gao, “A study on dynamic model of steady-state visual evoked potentials,” Journal of neural engineering, vol. 15, no. 4, pp. 046010, 2018. [63]B. A. Wandell, S. O. Dumoulin, and A. A. Brewer, “Visual field maps in human cortex,” Neuron, vol. 56, no. 2, pp. 366-383, 2007. [64]S. Warach, J. Ives, G. Schlaug, M. Patel, D. Darby, V. Thangaraj, R. Edelman, and D. Schomer, “EEG-triggered echo-planar functional MRI in epilepsy,” Neurology, vol. 47, no. 1, pp. 89-93, 1996. [65]K. Krakow, F. Woermann, M. Symms, P. Allen, L. Lemieux, G. Barker, J. Duncan, and D. Fish, “EEG-triggered functional MRI of interictal epileptiform activity in patients with partial seizures,” Brain, vol. 122, no. 9, pp. 1679-1688, 1999. [66]F. Lazeyras, O. Blanke, S. Perrig, I. Zimine, X. Golay, J. Delavelle, C. M. Michel, N. De Tribolet, J. G. Villemure, and M. Seeck, “EEG‐triggered functional MRI in patients with pharmacoresistant epilepsy,” Journal of Magnetic Resonance Imaging, vol. 12, no. 1, pp. 177-185, 2000. [67]L. Lemieux, K. Krakow, and D. R. Fish, “Comparison of spike-triggered functional MRI BOLD activation and EEG dipole model localization,” Neuroimage, vol. 14, no. 5, pp. 1097-1104, 2001. [68]G. Bonmassar, K. Anami, J. Ives, and J. W. Belliveau, “Visual evoked potential (VEP) measured by simultaneous 64-channel EEG and 3T fMRI,” NeuroReport, vol. 10, no. 9, pp. 1893-1897, 1999. [69]F. Kruggel, C. J. Wiggins, C. S. Herrmann, and D. Y. von Cramon, “Recording of the event‐related potentials during functional MRI at 3.0 Tesla field strength,” Magnetic Resonance in Medicine: An Official Journal of the International Society for Magnetic Resonance in Medicine, vol. 44, no. 2, pp. 277-282, 2000. [70]F. Kruggel, C. S. Herrmann, C. J. Wiggins, and D. Y. von Cramon, “Hemodynamic and electroencephalographic responses to illusory figures: recording of the evoked potentials during functional MRI,” Neuroimage, vol. 14, no. 6, pp. 1327-1336, 2001. [71]R. I. Goldman, J. M. Stern, J. Engel Jr, and M. S. Cohen, “Acquiring simultaneous EEG and functional MRI,” Clinical Neurophysiology, vol. 111, no. 11, pp. 1974-1980, 2000. [72]K. Anami, T. Mori, F. Tanaka, Y. Kawagoe, J. Okamoto, M. Yarita, T. Ohnishi, M. Yumoto, H. Matsuda, and O. Saitoh, “Stepping stone sampling for retrieving artifact-free electroencephalogram during functional magnetic resonance imaging,” Neuroimage, vol. 19, no. 2, pp. 281-295, 2003. [73]F. Freyer, R. Becker, K. Anami, G. Curio, A. Villringer, and P. Ritter, “Ultrahigh-frequency EEG during fMRI: pushing the limits of imaging-artifact correction,” Neuroimage, vol. 48, no. 1, pp. 94-108, 2009. [74]N. K. Logothetis, “What we can do and what we cannot do with fMRI,” Nature, vol. 453, pp. 869, 06/12/online, 2008. [75]D. Needell, and J. A. Tropp, “CoSaMP: Iterative signal recovery from incomplete and inaccurate samples,” Applied and Computational Harmonic Analysis, vol. 26, no. 3, pp. 301-321, 2009/05/01/, 2009. [76]C. Michel, D. Lehmann, B. Henggeler, and D. Brandeis, “Localization of the sources of EEG delta, theta, alpha and beta frequency bands using the FFT dipole approximation,” Electroencephalography and clinical neurophysiology, vol. 82, no. 1, pp. 38-44, 1992. [77]C. Haenschel, T. Baldeweg, R. J. Croft, M. Whittington, and J. Gruzelier, “Gamma and beta frequency oscillations in response to novel auditory stimuli: a comparison of human electroencephalogram (EEG) data with in vitro models,” Proceedings of the National Academy of Sciences, vol. 97, no. 13, pp. 7645-7650, 2000. [78]A. K. Roopun, S. J. Middleton, M. O. Cunningham, F. E. N. LeBeau, A. Bibbig, M. A. Whittington, and R. D. Traub, “A beta2-frequency (20–30 Hz) oscillation in nonsynaptic networks of somatosensory cortex,” Proceedings of the National Academy of Sciences, vol. 103, no. 42, pp. 15646-15650, 2006. [79]S. R. Jones, C. E. Kerr, Q. Wan, D. L. Pritchett, M. Hämäläinen, and C. I. Moore, “Cued Spatial Attention Drives Functionally-Relevant Modulation of The Mu Rhythm in Primary Somatosensory Cortex,” The Journal of neuroscience : the official journal of the Society for Neuroscience, vol. 30, no. 41, pp. 13760-13765, 2010. [80]N. Swann, H. Poizner, M. Houser, S. Gould, I. Greenhouse, W. Cai, J. Strunk, J. George, and A. R. Aron, “Deep brain stimulation of the subthalamic nucleus alters the cortical profile of response inhibition in the beta frequency band: a scalp EEG study in Parkinson''s disease,” Journal of Neuroscience, vol. 31, no. 15, pp. 5721-5729, 2011. [81]G. H. Glover, “Overview of functional magnetic resonance imaging,” Neurosurgery Clinics, vol. 22, no. 2, pp. 133-139, 2011. [82]J. Gotman, and F. Pittau, “Combining EEG and fMRI in the study of epileptic discharges,” Epilepsia, vol. 52, no. s4, pp. 38-42, 2011. [83]I. I. Christov, “Real time electrocardiogram QRS detection using combined adaptive threshold,” Biomedical engineering online, vol. 3, no. 1, pp. 28, 2004. [84]K. H. Kim, H. W. Yoon, and H. W. Park, “Improved ballistocardiac artifact removal from the electroencephalogram recorded in fMRI,” Journal of neuroscience methods, vol. 135, no. 1, pp. 193-203, 2004. [85]P. Maragos, J. F. Kaiser, and T. F. Quatieri, “On amplitude and frequency demodulation using energy operators,” IEEE Transactions on signal processing, vol. 41, no. 4, pp. 1532-1550, 1993.
|