跳到主要內容

臺灣博碩士論文加值系統

(44.221.66.130) 您好!臺灣時間:2024/06/24 03:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳伯瑜
研究生(外文):Bo-Yu Chen
論文名稱:新型螢光共聚高分子合成及其多功能環境感測器的應用
論文名稱(外文):Novel Fluorescent Copolymers and Their Versatile Sensing Applications
指導教授:鄭如忠
指導教授(外文):Ru-Jong Jeng
口試委員:郭霽慶童世煌羅承慈邱昱誠
口試委員(外文):Chi-Ching KuoShih-Huang TungChen-Tsyr LoYu-Cheng Chiu
口試日期:2019-01-21
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:高分子科學與工程學研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:95
中文關鍵詞:螢光感測靜電紡絲纖維羅丹明BpHHg2+
DOI:10.6342/NTU201900264
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究透過不同的螢光感測小分子,設計出一系列構築單體類似,具有多功能感測之螢光共聚高分子。包括(1)具備pH值、Hg2+感測及分離應用的無規則共聚高分子Poly(HEMA-co-NMA-co-RhBN2AM); (2)具備pH值、環境溫度及Hg2+感測應用的無規則共聚高分子Poly(NIPAAm-co-NMA-co-RhBN2AM); (3)具備pH值、環境溫度、Cu2+及Hg2+感測應用的三嵌段無規則共聚高分子P(NIPAAm-co-NAAP)-b-PNMA-b-P(NIPAAm-co-NAAP)及P(NIPAAm-co-RhBN2AM)-b-PNMA-b-P(NIPAAm-co-RhBN2Am)。其中2-Hydroxyethyl methacrylate (HEMA)為高度吸水性材料,N-Isopropylacrylamide (NIPAAm)為吸水性及溫度感測材料,N-methylolacrylamide (NMA)提供化學交聯,以上述單體構築不同比例的高分子主鏈,搭配上具備金屬離子選擇性的螢光感測單體,RhBN2AM (pH值、Hg2+感測)橘紅色螢光放光基團,NAAP(Cu2+感測)螢光變色(綠光藍光)基團。將上述(1)(2)的螢光共聚高分子,分別以靜電紡絲加工技術,製備成能具有pH值、環境溫度及Hg2+感測的多功能新穎性奈米纖維,並藉由螢光的放光強度達到環境感測的目的。而三嵌段螢光共聚高分子(3)則可以應用於水溶液中pH值、環境溫度、Cu2+及Hg2+感測。相較於傳統螢光化學感測器大部份只能應用於有機溶液中的金屬離子感測,本研究結果顯示,此一系列新型化學螢光感測器透過高分子鏈段中NMA的化學交聯,能夠穩定奈米纖維結構,改善其在水溶液中之感測能力、重複使用性,而三嵌段螢光共聚高分子更能夠直接應用於水溶液中的金屬離子感測。綜上所述,此系列具金屬離子(Hg2+、Cu2+)、溫度及pH值感測之新型螢光化學感測器,具肉眼即可判定的螢光之開關表現,且奈米纖維膜更具備金屬離子感測、分離及可重複使用性,未來在生物及環境感測元件等相關領域,具相當大的發展潛力。
A series of novel multifunctional fluorescent chemosensors were based on (1) Poly(HEMA-co-NMA-co-RhBN2AM) random copolymers exhibited high sensitivity of pH, and Hg2+; (2) Poly(NIPAAm-co-NMA-co-RhBN2AM) random copolymers showed the properties of pH, Hg2+, and temperature sensing; (3) the triblock random copolymers, P(NIPAAm-co-NAAP)-b-PNMA-b-P(NIPAAm-co-NAAP) and P(NIPAAm-co-RhBN2AM)-b-PNMA-b-P(NIPAAm-co-RhBN2Am) had pH, Hg2+, Cu2+, and temperature sensing properties. The 2-Hydroxyethyl methacrylate (HEMA) (a highly hydrophilic material), N-Isopropylacrylamide (NIPAAm) (a hydrophilic and thermos-sensitivity material), N-methylolacrylamide (NMA) (a thermo cross-linkable material), RhBN2AM (a pH, and Hg2+-sensing probe with red fluorescence on/off switchable properties), and NAAP (a Cu2+-sensing probe with fluorescence colors changed from green to blue). Moreover, fluorescent chemosensory filter membranes composed of electrospun (ES) nanofibers of (1), and (2) were prepared by using a single-capillary spinneret, they exhibited multi-sensing properties of pH, Hg2+, and temperature. Especially, the fluorescent chemosensory filter membranes were reusable which was due to the thermo cross-linking moiety (NMA) could maintain the cylindrical shapes of ES nanofibers. In addition, the triblock random copolymers, P(NIPAAm-co-NAAP)-b-PNMA-b-P(NIPAAm-co-NAAP) and P(NIPAAm-co-RhBN2AM)-b-PNMA-b-P(NIPAAm-co-RhBN2Am) improved the water solubility of fluorescent probe. Therefore, the novel multifunctional fluorescent chemosensors with fluorescence on/off switchable properties can be used as “naked-eye” sensors and have considerable potential of applications in environment sensing devices.
中文摘要 i
英文摘要 ii
目錄 iii
圖目錄 vii
表目錄 xi
流程圖目錄 xi
第一章 前言 1
第二章 研究背景及動機 2
2.1 環境中重金屬對人體的危害 2
2.2 螢光化學感測器 4
2.2.1 pH值感測 4
2.2.2 金屬離子感測 7
2.3 具有感測性質之螢光高分子 11
2.3.1 溫度、pH值感測 11
2.3.2 金屬離子感測 15
2.4 具有金屬離子感測之螢光薄膜 19
2.5 具有金屬離子感測之螢光奈米纖維 21
第三章 實驗步驟 24
3.1 藥品及溶劑 24
3.2 檢測儀器 26
3.3 Poly(HEMA-co-NMA-co-RhBN2AM) 27
3.3.1 RhBN2合成 27
3.3.2 RhBN2AM合成 27
3.3.3 Poly(HEMA-co-NMA合成) 28
3.3.4 Poly(HEMA-co-NMA-co-RhBN2AM)合成 29
3.3.5 靜電紡絲奈米纖維及薄膜製備 29
3.4 Poly(NIPAAm-co-NMA-co-RhBN2AM) 30
3.4.1 RhBN2AM合成 30
3.4.2 Poly(NIPAAm-co-NMA-co-RhBN2AM)合成 30
3.4.3 靜電紡絲奈米纖維及薄膜製備 31
3.5 P(NIPAAm-co-NAAP)-b-PNMA-b-P(NIPAAm-co-NAAP) (Triblock-N) P(NIPAAm-co-RhBN2AM)-b-PNMA-b-P(NIPAAm-co-RhBN2Am) (Triblock-R) 31
3.5.1 NAAP合成 31
3.5.2 鏈轉移劑(Chain transfer agent,CTA) BDMAT合成 33
3.5.3 P(NIPAAm-co-NAAP)-b-PNMA-b-P(NIPAAm-co-NAAP) (Tribloc-N)合成 33
3.5.4 P(NIPAAm-co-RhBN2AM)-b-PNMA-b-P(NIPAAm-co-RhBN2AM) (Triblock-R)合成 34
第四章 結果與討論 36
4.1 Poly(HEMA-co-NMA-co-RhBN2AM) 36
4.1.1 RhBN2結構鑑定 36
4.1.2 RhBN2AM結構鑑定 38
4.1.3 RhBN2AM螢光性質鑑定(Hg2+螯合、pH值感測) 40
4.1.4 Poly(HEMA-co-NMA)結構鑑定 42
4.1.5 Poly(HEMA-co-NMA-co-RhBN2AM)結構鑑定 44
4.1.6 靜電紡絲奈米纖維型態鑑定 47
4.1.7 奈米纖維膜交聯度鑑定 48
4.1.8 pH值感測(螢光奈米纖維膜) 50
4.1.9 Hg2+感測(P3-1.0纖維膜) 51
4.1.10 金屬離子專一性(P3-1.0纖維膜) (水溶液) 52
4.1.11 金屬離子專一性(P3-1.0纖維膜) (有機溶劑混合水溶液) 54
4.1.12 感測能力(奈米纖維膜vs.薄膜) 55
4.1.13 共軛焦顯微鏡圖(P3-1.0纖維膜) 56
4.1.14 P3-1.0螢光奈米纖維膜的應用 56
4.2 Poly(NIPAAm-co-NMA-co-RhBN2AM) 58
4.2.1 RhBN2AM結構鑑定 59
4.2.2 Poly(NIPAAm-co-NMA-co-RhBN2AM)結構鑑定 60
4.2.3 靜電紡絲奈米纖維型態鑑定 63
4.2.4 pH值感測(P3纖維膜) 64
4.2.5 Hg2+感測(P3纖維膜) 65
4.2.6 環境溫度感測(P3纖維膜) 66
4.2.7 金屬離子專一性及可逆性(P3纖維膜) 67
4.2.8 P3螢光奈米纖維膜螢光放光性質 69
4.3 P(NIPAAm-co-NAAP)-b-PNMA-b-P(NIPAAm-co-NAAP) (Triblock-N) P(NIPAAm-co-RhBN2AM)-b-PNMA-b-P(NIPAAm-co-RhBN2Am) (Triblock-R) 70
4.3.1 NAAP結構鑑定 70
4.3.2 NAAP螢光性質鑑定(Cu2+螯合) 74
4.3.3 鏈轉移劑(Chain transfer agent,CTA) BDMAT結構鑑定 75
4.3.4 P(NIPAAm-co-NAAP) (PNN)結構鑑定 76
4.3.5 P(NIPAAm-co-RhB) (PNR)結構鑑定 76
4.3.6 P(NIPAAm-co-NAAP) -b-PNMA-b- P(NIPAAm-co-NAAP) (Triblock-N)結構鑑定 78
4.3.7 P(NIPAAm-co-RhBN2AM)-b-PNMA-b-P(NIPAAm-co-RhBN2Am) (Triblock-R)結構鑑定 79
4.3.8 金屬離子專一性 (Triblock-N) 82
4.3.9 pH值感測(Triblock-R) 83
4.3.10 環境溫度感測(Triblock-R) 84
4.3.11 金屬離子專一性 (Triblock-N) 85
第五章 結論 86
第六章 未來目標 87
第七章 文獻 88
第八章 著作發表 93
[1]P. Grandjean, P. Weihe, R. F. White, F. Debes. Cognitive Performance of Children Prenatally Exposed to ‘‘Safe’’ Levels of Methylmercury. Environ. Res., Sect. A 77, (1998), 165—172.
[2]T. Liu, S. Liu. Responsive Polymers-Based Dual Fluorescent Chemosensors for Zn2+ Ions and Temperatures Working in Purely Aqueous Media. Anal. Chem. 83, (2011), 2775–2785.
[3]X. Zeng, X. Xu, H. M. Boezen, X. Huo. Children with Health Impairments by Heavy Metals in an E-Waste Recycling Area. Chemosphere 148, (2016), 408-415.
[4]K. H. Kim, E. Kabir, S. A. Jahan. A Review on the Distribution of Hg in the Environment and Its Human Health Impacts. J. Hazard. Mater. 306, (2016), 376-385.
[5]N. I. Georgiev, M. D. Dimitrova, Y. D. Todorova, V. B. Bojinov. Synthesis, Chemosensing Properties and Logic Behaviour of a Novel Ratiometric 1,8-Naphthalimide Probe Based on ICT and PET. Dyes Pigm. 131, (2016), 9-17.
[6]N. I. Georgiev, V. B. Bojinov, P. S. Nikolov. The Design, Synthesis and Photophysical Properties of Two Novel 1,8-Naphthalimide Fluorescent pH Sensors Based on PET and ICT. Dyes Pigm. 88, (2011), 350-357.
[7]X. L. Shi, G. J. Mao, X. B. Zhang, H. W. Liu, Y. J. Gong, Y. X. Wu, et al. Rhodamine-Based Fluorescent Probe for Direct Bio-Imaging of Lysosomal pH Changes. Talanta 130, (2014), 356-362.
[8]R. Zammit, M. Pappova, E. Zammit, J. Gabarretta, D. C. Magri. 1,3,5-Triarylpyrazolines—pH-Driven off-on-off Molecular Logic Devices Based on a “Receptor1-Fluorophore-Spacer-Receptor2” Format with Internal Charge Transfer (ICT) and Photoinduced Electron Transfer (PET) Mechanisms. Can. J. Chem. 93, (2015), 199-206.
[9]Y. Xiang, A. Tong. A New Rhodamine-Based Chemosensor Exhibiting Selective FeIII-Amplified Fluorescence. Org. Lett. 8, (2006), 1549-1552.
[10]C. Kaewtong, B. Wanno, Y. Uppa, N. Morakot, B. Pulpoka, T. Tuntulani. Facile Synthesis of Rhodamine-Based Highly Sensitive and Fast Responsive Colorimetric and off-on Fluorescent Reversible Chemosensors for Hg2+: Preparation of a Fluorescent Thin Film Sensor. Dalton Trans. 40, (2011), 12578–12583.
[11]B. Bag, A. Pal. Rhodamine-Based Probes for Metal Ion-induced Chromo-/Fluorogenic Dual Signaling and Their Selectivity Towards Hg(II) ion. Org. Biomol. Chem. 9, (2011), 4467–4480.
[12]J. Mao, Q. He, W. Liu. An "off-on" Fluorescence Probe for Chromium(III) Ion Determination in Aqueous Solution. Anal. Bioanal. Chem. 396, (2010), 1197-1203.
[13]J. H. Soh, K. M. K. Swamy, S. K. Kim, S. Kim, S. H. Lee, J. Yoon. Rhodamine Urea Derivatives as Fluorescent Chemosensors for Hg2+. Tetrahedron Lett. 48, (2007), 5966-5969.
[14]K. Ghosh, T. Sarkar, A. Samadder. A Rhodamine Appended Tripodal Receptor as a Ratiometric Probe for Hg2+ Ions. Org. Biomol. Chem. 10, (2012), 3236–3243.
[15]X. Zhang, Y. Shiraishi, T. Hirai. Cu(II)-Selective Green Fluorescence of a Rhodamine−Diacetic Acid Conjugate. Org. Lett. 9, (2007), 5039-5042.
[16]J. Hu, X. Zhang, D. Wang, X. Hu, T. Liu, G. Zhang, et al. Ultrasensitive Ratiometric Fluorescent pH and Temperature Probes Constructed from Dye-Labeled Thermoresponsive Double Hydrophilic Block Copolymers. J. Mater. Chem. 21, (2011), 19030–19038.
[17]J. Hu, C. LiS. Liu. Hg2+-Reactive Double Hydrophilic Block Copolymer Assemblies as Novel Multifunctional Fluorescent Probes with Improved Performance. Langmuir : the ACS journal of surfaces and colloids 26, (2010), 724–729.
[18]J. Hu, T. Wu, G. Zhang, S. Liu. Highly Selective Fluorescence Sensing of Mercury Ions over a Broad Concentration Range Based on Mixed Polymeric Micelles. Macromolecules 45, (2012), 3939−3947.
[19]Y. Hu, B. Wang, Z. Su. Synthesis and Properties of a New Green Water-Soluble Polymer for Proton and Metal-Cation Sensing. J. Appl. Polym. Sci. 111, (2009), 1931–1935.
[20]B. Ma, S. Wu, F. Zeng. Reusable Polymer Film Chemosensor for Ratiometric Fluorescence Sensing in Aqueous Media. Sens. Actuators, B 145, (2010), 451–456.
[21]F. Lv, X. Feng, H. Tang, L. Liu, Q. Yang, S. Wang. Development of Film Sensors Based on Conjugated Polymers for Copper (II) Ion Detection. Adv. Funct. Mater. 21, (2011), 845–850.
[22]M. Y. Abdelaal, T. R. Sobahi, R. M. El-Shishtawy. Chromophoric Thin Film Based on Cellulose Triacetate Blends for Sensing Metal Ions. C. R. Chim. 17, (2014), 557–562.
[23]W. Wang, Q. Yang, L. Sun, H. Wang, C. Zhang, X. Fei. et al. Preparation of Fluorescent Nanofibrous Film as a Sensing Material and Adsorbent for Cu2+ in Aqueous Solution via Copolymerization and Electrospinning. Journal of hazardous materials 194, (2011), 185-92.
[24]B. Y. Chen, C. C. Kuo, Y. S. Huang, S. T. Lu, F. C. Liang, D. H. Jiang. Novel Highly Selective and Reversible Chemosensors Based on Dual-ratiometric Fluorescent Electrospun Nanofibers with pH- and Fe3+-Modulated Multicolor Fluorescence Emission. ACS applied materials & interfaces 7, (2015), 2797−2808.
[25]C. C. Hung, C. C. Kuo, N. K. weng, W. C. Wu, B. Y. Chen, C. J. Cho, et al. Novel Highly Sensitive and Reversible Electrospun Nanofibrous Chemosensor-filters Composed of Poly(HEMA-co-MNA) and bpy-F-bpy with Metal-Ion-Modulated Multicolor Fluorescence Emission. Polym J 48, (2016), 439–449.
[26]C. J. Cho, S. T. Lu, C. C. Kuo, F. C. Liang, B. Y. Chen, C. C. Chu. Pyrene or Rhodamine Derivative–Modified Surfaces of Electrospun Nanofibrous Chemosensors for Colorimetric and Fluorescent Determination of Cu2+, Hg2+, and pH. React Funct Polym 108, (2016), 137-147.
[27]F. C. Liang, Y. L. Luo, C. C. Kuo, B. Y. Chen, C. J. Cho, F. J. Lin, et al. Novel Magnet and Thermoresponsive Chemosensory Electrospinning Fluorescent Nanofibers and Their Sensing Capability for Metal Ions. Polymers 9, (2017).
[28]B. Y. Chen, C. C. Kuo, C. J. Cho, F. C. Liang, R. J. Jeng. Novel Fluorescent Chemosensory Filter Membranes Composed of Electrospun Nanofibers with Ultra-Selective and Reversible pH and Hg2+ Sensing Characteristics. Dyes Pigm. 143, (2017), 129-142.
[29]F. C. Liang, C. C. Kuo, B. Y. Chen, C. J. Cho, C. C. Hung, W. C. Chen, et al. RGB-Switchable Porous Electrospun Nanofiber Chemoprobe-Filter Prepared from Multifunctional Copolymers for Versatile Sensing of pH and Heavy Metals. ACS Appl. Mater. Interfaces 9, (2017), 16381-16396.
[30]W. Wang, Q. Yang, L. Sun, H. Wang, C. Zhang, X. Fei, et al. Preparation of Fluorescent Nanofibrous Film as a Sensing Material and Adsorbent for Cu2+ in Aqueous Solution Via Copolymerization and Electrospinning. J. Hazard. Mater. 194, (2011), 185-192.
[31]J. Wang, Z. Kang, B. Qi, Q. Zhou, S. Xiao, Z. Shao. Poly(N-isopropylacrylamide) Hydrogels Fabricated Via Click Chemistry: Well-defined α,ω-bis Propargyl Linear Poly(N-isopropylacrylamide)s as Crosslinkers. RSC Adv. 4, (2014), 51510-51518.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top