跳到主要內容

臺灣博碩士論文加值系統

(44.201.97.0) 您好!臺灣時間:2024/04/16 08:31
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曹瑋
研究生(外文):Wei Cao
論文名稱:砷磷化銦變晶緩衝層之短波長紅外線偵測器的製程與特性研究
論文名稱(外文):Study on Fabrication and Characteristics of InAsyP1-y Metamorphic Buffer Layers for SWIR Photodetector
指導教授:林浩雄林浩雄引用關係
指導教授(外文):Hao-Hsiung Lin
口試委員:羅俊傑毛明華胡振國
口試日期:2019-06-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:電子工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:53
中文關鍵詞:短波長紅外線偵測器變晶緩衝層砷化銦鎵磷砷化銦
DOI:10.6342/NTU201901149
相關次數:
  • 被引用被引用:0
  • 點閱點閱:206
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文係分析短波長紅外線偵測器之製程和光電特性。我們設計了兩種波段的偵測器,分別為1.9 μm 和2.2 μm 短波長紅外線波段偵測器,是以 InGaAs 材料做為光吸收層,在 N+ InP 基板之上開發InAsP變晶成長(metamorphic)技術,使用多層的階梯式漸變緩衝層(step-graded buffers),再利用鋅擴散(Zn-diffusion)製程,以成長不具應變的 InAsP/InGaAs PIN 二極體磊晶結構,最後通過黃光製程和金屬蒸鍍得到完整的短波長紅外線波段偵測器。我們以穿透式電子顯微鏡截面影像(TEM cross-section imaging) 研究 InAsP 變晶緩衝層和 InGaAs 光吸收層的厚度大小。並以室溫的光激發螢光頻譜(PL)、光反應頻譜(Spectral response)以及電性量測(I-V curve)和電容量測(CV curve),檢驗元件光電特性。
利用 TEM 技術,來觀察元件的(110)截面圖,我們發現此結構能夠將錯配差排(misfit dislocation)限制在鬆弛層,並且在光吸收層 InGaAs 中未觀察到穿隧差排(threading dislocation)。我們將製程完成之元件進行進行室溫 300K的光激發螢光頻譜量測,量測光吸收層 InGaAs 之能隙 ,並且回推 InGaAs 合金的彎曲參數(bowing parameter) C。接著我們利用光反應頻譜來測定了元件的光回應度,以及其截止波長和量子效率。我們對元件進行了 I-V 量測,並利用理論的電流公式進行擬合;通過 I-V curve的計算我們得到了元件的探測率大小和 R0A大小。此外我們還對元件進行了 CV 量測,並根據 MOS 理論為基礎,推導出了本元件的等效電路,得到了未受到缺陷影響的 C-V,並且求出了元件的內建電位大小和元件摻雜濃度。
In this paper, the fabrication process and photoelectric characteristics of short wavelength infrared detector are analyzed. We have designed two detectors with bandgap of 1.9 μm and 2.2 μm respectively. We used InGaAs as an absorption layer and developed InAsP on the N + InP substrate by metamorphic growth. Zinc diffusion, lithography and metal deposition processes are used to develop multiple layers of step-graded buffers into strain-free, short-wavelength infrared band detector InAsP/InGaAs PIN diode. We used TEM cross-section imaging to study the thickness of InAsP metamorphic buffer layer and InGaAs absorption layer. The photoelectric characteristics of components were tested with Photoluminescence spectrum (PL), Spectral response, I-V curve and C-V curve at room temperature.
In TEM (110) section, we found that this structure will limit the misfit dislocations in the buffer layer, and threading dislocation was not observed in the absorption layer. We obtained energy gap of InGaAs absoprtion layer and the bowing parameter C of InGaAs alloy with PL in 300K. Then we used the response spectrum to measure devices’ light responsivity, cut-off wavelength and quantum efficiency. We measured the I-V curve and fitted them with the theoretical current formula. Through the calculation of I-V curve, we obtained the detectivity and R0A of the device. In addition, we also measured the C-V curve of the device, and deduced the equivalent circuit of the element based on the MOS theory. The measured C-V is not affected by the defect, the built-in potential and doping concentration of the device are also calculated.
致謝 ................................................................................................................. I
中文摘要 ........................................................................................................ II Abstract ....................................................................................................... III
目錄 .............................................................................................................. IV
圖目錄 .......................................................................................................... VI
表目錄 .......................................................................................................... IX
第一章 序論 ................................................................................................... 1
1.1研究動機 ............................................................................................. 1
1.2 PIN 檢光二極體之工作原理 ............................................................. 2
1.3 變晶磊晶機製 .................................................................................... 3
1.4緩衝層材料選取 ................................................................................. 5
1.5 論文架構 ............................................................................................ 5
第二章 實驗設計與分析方法 ....................................................................... 7
2.1 短波長紅外線偵測器........................................................................ 7
2.2 穿透式電子顯微鏡 (Transmission electron microscope, TEM) ..... 10
2.3 光激發螢光頻譜 (Photoluminescence, PL) ..................................... 11
2.4 光反應頻譜 (Spectral response) ....................................................... 12
第三章 元件製程流程與結構 ..................................................................... 14
3.1 PIN 磊晶結構 ................................................................................... 14
3.2製程流程 ........................................................................................... 15
3.2.1第一道光罩–製作不同直徑的圓進行擴散 ................................ 15
3.2.2第二道光罩–RIE蝕刻與製作 P 型金屬環 ................................ 15
3.2.3第三道光罩–製作 Bond Pad 金屬 .............................................. 17
3.3穿透式電子顯微鏡截面圖分析 ....................................................... 21
第四章 短波長紅外線偵測器的光電特性 ................................................. 28
4.1 光激發螢光頻譜分析(Photoluminescence, PL) ............................. 28
4.2 光響應頻譜 (Spectral response) ...................................................... 32
4.3 暗電流密度 ...................................................................................... 39
4.4 偵測率 .............................................................................................. 44
4.5 電容分析 .......................................................................................... 45
第五章 結論 ................................................................................................. 51
參考文獻 ....................................................................................................... 52
[1] Rothman LS, “Absorption by atmospheric gases in the IR, visible and UV spectral regions, ” Lecture 6.
[2] Fukuda, Mitsuo., “Optical Semiconductor Devices,” Wiley, 1999.
[3] J. W. Matthews, “Defects associated with the accommodation of misfit bet ween crystals, ” J. Vac. Sci. Technol. 12, pp.126-133, 1975
[4] J. W. Matthews and A. E. Blakeslee, “Defects in epitaxial multilayers, ” J. Cryst. Growth 27, 118, 1974.
[5] M. K. Hudait, Y. Lin, M. N. Palmisiano, C. Tivarus, J. P. Pelz, S. A. Ri ngel,“Comparison of mixed anion, InAsyP1-y and mixed cation, InxAl1-xAs m etamorphic buffers grown by molecular beam epitaxy on (100) InP substrates,” J. Appl. Phys. 95, p. 3952, 2004.
[6] A. Jandl, M. T. Bulsara, E. A. Fitzgerald, “Materials properties and dislocation dynamics in InAsP compositionally graded buffers on InP substrates, ” J. Appl. Phys. 115, p. 153503, 2014.
[7] M. K. Hudait, Y. Lin, S. A. Ringel, “Strain relaxation properties of InAsyP1-y metamorphic materials grown on InP substrates,” J. Appl. Phys. 105, p. 061643, 2009.
[8] J. Kirch, T. Garrod, S. Kim, J. H. Park, J. C. Shin, L. J. Mawst, T. F. Kuech, X. Song, S. E. Babcock, I. Vurgaftman, J. R. Meyer, T. S. Kuan, “InAsyP1-y metamorphic buffer layers on InP substrates for mid-IR diode lasers,” J. Cryst. Growth 312, pp. 1165-1169, 2010.
[9] L. Zimmermann, J. John, S. Degroote, G. Borghs, C. V. Hoof, S. Nemeth, “Extended wavelength InGaAs on GaAs using InAlAs buffer for back-side- illuminated shortwave infrared detectors, ” Appl. Phys. Lett. 82, 2838, 2003.
[10] Y. Zhang, Y. Gu, Z. Tian, A. Li, X. Zhu, Y. Zheng, “Wavelength extended 2.4 μm heterojunction InGaAs photodiodes with InAlAs cap and linearly graded buffer layers suitable for both front and back illuminations, ” Infrared Phys. Technol. 51, pp.316–321, 2008.
[11] R. U. Martinelli, T. J. Zamerowski, P. A. Longeway, “2.6 μm InGaAs photodiodes, ” Appl. Phys. Lett. 53, 989, 1988.
[12] Y. Zhang, Y. Gu, Z. Tian, A. Li, X. Zhu, K. Wang, “Wavelength extended InGaAs/InAlAs/InP photodetectors using n-on-p configuration optimized for back illumination, ” Infrared Phys. Technol. 52, pp.52–56, 2009.
[13] L. Zhou, Y. G. Zhang, X. Y. Chen, Y. Gu, H. S. B. Y. Li, Y. Y. Cao, S. P. Xi, “Dark current characteristics of GaAs based 2.6 μm InGaAs photodetectors on different types of InAlAs buffer layers, ” Appl. Phys. 47, 085107, 2014.
[14] A. R. Denton and N. W. Ashcroft, “Vegard’s law,” Phys. Rev. A 43, No. 6, 3161, 1991.
[15] I. Vurgaftman and J. R. Meyer, “Band parameters for III-V compound semiconductors and their alloys,” J. Appl. Phys. 89, pp. 5815-5875, 2001.
[16] https://myscope.training/legacy/tem/introduction/
[17] Microchem, Lift off resist datasheet, Available: http://www.microchem.com
[18] E. Tournie, J. L. Lazzar, E. Villemain, A. Joullie, L. Gouskov, M. Karim, I. Salesse, “GalnAsSb/GaSb pn photodiodes for detection to 2.4μm, ” Electronics Lett. 27, 14, pp.12371239, 1991.
[19] A. P. Craig, M. Jain, G. Wicks, T. Golding, K. Hossain, K. McEwan, C. Howle, B. Percy, A. R. J. Marshall, “Short wave infrared barriode detectors using InGaAsSb absorption material lattice matched to GaSb, ” Appl. Phys. Lett. 106, 68 201103, 2015.
[20] H. Luo, J. A. Gupta, and H. C. Liu, “1.55μm GaNAsSb photodetector on GaAs, ” Appl. Phys. Lett. 86, 211121, 2005.
[21] W. K. Loke, S. F. Yoon, Z. Xu, K. H. Tan, T. K. Ng, Y. K. Sim, S. Wicaksono, N.Saadsaoud, D. Decoster, J. Chazelas, “GaNAsSb/GaAs waveguide photodetector with response up to 1.6 μm grown by molecular beam epitaxy, ” Appl. Phys. Lett. 93, 081102, 2008.
[22] R. Sidhu, N. Duan, J. C. Campbell, A. L. Holmes, “A 2.3μm cutoff wavelength photodiode on InP using lattice-matched GaInAs GaAsSb type II quantum wells, ” Proceeding of 2005 IPRM, p.148, 2005.
[23] B. Chen, W. Jiang, J. Yuan, A. L. Holmes, Jr., and B. M. Onat, “SWIR/MWIR InPBased pin photodiodes with InGaAs/GaAsSb typeII quantum wells, ” IEEE 47, 9, pp.12441250, 2011.
[24] http://www.hamamatsu.com
[25] X. Y. Gong, T. Yamaguchi, H. Kan, T. Makino, T. Iida, T. Kato, M. Aoyama, Y. Hayakawa, and M. Kumagawa, Jpn. J. Appl. Phys. 36, pp. 2614-2616, 1997.
[26] Semiconductor Devices: Physics and Technology, S. M. Sze. New York: Wiley, 1985; 2nd ed., 2001, ISBN 0-471-33372-7; 3ed ed.
[27] https://www.tudelft.nl/en/faculty-of-applied-sciences
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top