(35.172.150.239) 您好!臺灣時間:2019/11/14 04:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:詹子欣
研究生(外文):Tzu-Hsin Chan
論文名稱:人腦視覺皮質功能性核磁共振影像信號與複雜自然視覺刺激物理特性關聯性分析
論文名稱(外文):The analysis of the correlation between functional magnetic resonance imaging signal at human visual cortex and physical properties of complex naturalistic audiovisual stimuli
指導教授:林發暄
指導教授(外文):Fa-Hsuan Lin
口試委員:郭文瑞段正仁
口試日期:2018-12-26
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:44
中文關鍵詞:人腦視覺皮質功能性核磁共振影像自然視覺刺激受測者間相關性分析對比度亮度閃爍頻率
DOI:10.6342/NTU201900583
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
受測者間相關性分析(Inter-subject correlation analysis, ISC)被廣泛應用於腦神經科學領域的自然刺激研究中。從過往研究1,2中可以得知多位受測者在接受相同視覺刺激下,受測者間時序上的血氧濃度訊號在視覺皮質存在顯著相關性,本研究欲探究的即是造成此相關性產生的原因。自然視覺刺激本身包含對比度、亮度,以及各種不同的閃爍頻率等已知會激發視覺皮質腦神經活化的刺激成份。因此在本研究中,我們使用功能性核磁共振影像,搭配針對人腦視覺皮質的線性迴歸分析(General linear model analysis, GLM)與ISC分析,來研究對比度、亮度以及特定的閃爍頻率在ISC分析於視覺皮質的關聯性。
首先,我們針對受測者視覺皮質的血氧濃度訊號與不同刺激物理特性分別做GLM分析,實驗結果說明對比度和閃爍頻率(0.5赫茲、1赫茲、4赫茲、5赫茲、8赫茲和10赫茲)的刺激是視覺皮質活化的原因,與過往研究3-10相符。接著,我們進一步利用GLM分析去除受測者血氧濃度訊號中與對比度和特定閃爍頻率(0.5赫茲、1赫茲、4赫茲、5赫茲、8赫茲和10赫茲)存在線性相依的部分。經統計檢定發現:去除對比度和特定閃爍頻率前後的ISC分析結果在視覺皮質呈現顯著(p<0.01)。我們認為這代表對比度和特定閃爍頻率為自然視覺刺激中造成受測者間血氧濃度訊號於視覺皮質存在高相關性的原因。此外,在受測者血氧濃度訊號與不同閃爍頻率分別進行GLM分析的結果中,我們發現人腦視覺皮質具有不同深度偏好特定閃爍頻率的特徵。首先,我們成功利用自然視覺刺激實驗重現過往區組設計(block design)研究11的發現:1赫茲閃爍頻率的刺激對應到視覺皮質的內側。相較之下,10赫茲閃爍頻率的刺激對應到視覺皮質的外側。有趣的是,我們發現以往研究未曾討論的閃爍頻率0.1赫茲的刺激則是對應到視覺皮質的外側。同時,在實驗中我們發現相較於低頻的閃爍頻率(0.1赫茲),位於內側的視丘對於高頻的閃爍頻率(10赫茲)較為敏感。綜合以上的實驗發現,本篇論文提供了證據說明在自然視覺刺激中,對比度和閃爍頻率即是造成ISC分析於視覺皮質關聯性的關鍵因素。
Inter-subject correlation (ISC) analysis was generally used in naturalistic stimuli studies. Hemodynamic activity in human visual cortex was shown to correlate across subjects during natural viewing a movie clip1,2. This study aimed to investigate the physical properties of naturalistic audiovisual stimuli what cause the correlation across subjects'' hemodynamic activity in visual cortex. Naturalistic audiovisual stimuli include multiple physical properties, such as contrast, brightness and flickering frequencies in different frequency bands. To investigate what physical properties of naturalistic audiovisual stimuli cause the correlation across subjects'' hemodynamic activity in visual cortex, we used functional magnetic resonance imaging (fMRI) signal in general linear model (GLM) analysis and ISC analysis.
First, the results of GLM analysis examining the correlation between the hemodynamic activity of visual cortex and each physical properties of naturalistic audiovisual stimuli turned out: visual cortex was activated by contrast and specific flickering frequencies (0.5Hz, 1Hz, 4Hz, 5Hz, 8Hz and 10Hz), same as the finding of previous studies3-10. And then, we demonstrated significant (p<0.01) t-value in the difference between results of voxel-by-voxel inter-subject correlation before and after removed contrast and specific flickering frequencies in visual cortex. Therefore, we suggest contrast and flickering frequency cause the correlation of hemodynamic activity in visual cortex across subjects. Furthermore, we revealed the selectivity of layer-specific frequency-preference in visual cortex. Same as the finding of the previous study11, we found out that the medial side of occipital lobe was activated by 1Hz of flickering frequency. And the lateral side of occipital lobe was activated by 10Hz of flickering frequency. Interestingly, we demonstrated 0.1Hz of flickering frequency, which has not been studied before, activated the lateral side of occipital lobe. Moreover, we also revealed that thalamus is more sensitive to higher flickering frequency (10Hz). Taken together, our findings provide evidence for contrast and flickering frequency cause the correlation of hemodynamic activity in visual cortex across subjects.
目錄
口試委員會審定書 i
誌謝 ii
摘要 iii
ABSTRACT v
目錄 vii
圖目錄 ix
第一章 前言 1
第二章 研究方法 4
2.1 受測者 4
2.2 實驗內容 4
2.3 功能性核磁共振資料收集 5
2.4 功能性核磁共振資料處理 5
2.5 受測者間相關性分析(Inter-Subject Voxel-to-Voxel Correlation Analysis, ISC) 6
2.6 線性迴歸分析(General Linear Model Analysis, GLM) 7
2.7 去除特定自然視覺刺激物理特性後的受測者間相關性分析(Inter-Subject Voxel-to-Voxel Correlation Analysis after Removed Physical Properties of Naturalistic Audiovisual Stimuli) 15
第三章 結果 17
3.1 受測者間相關性分析 17
3.2 線性迴歸分析 19
3.2.1 對比度 19
3.2.2 閃爍頻率 21
3.2.3 平均亮度 27
3.3 去除對比度和閃爍頻率前後的受測者間相關性分析結果差異 28
第四章 討論 30
4.1 對比度 30
4.2 閃爍頻率 38
4.3 受測者間相關性分析 39
4.4 結論 40
參考文獻 42
1Hasson U., Nir Y., Levy I., Fuhrmann G. & Malach R.Intersubject synchronization of cortical activity during natural vision. Science.2004; 303:1634-1640.

2Jääskeläinen I. P., Koskentalo K., Balk M. H., Autti T., Kauramäki J., Pomren C. & Sams M.Inter-subject synchronization of prefrontal cortex hemodynamic activity during natural viewing. The open neuroimaging journal.2008; 2:14.

3Reid Jr R. C. & Shapley R.Brightness induction by local contrast and the spatial dependence of assimilation. Vision research.1988; 28:115-132.

4Rossi A. F., Rittenhouse C. D. & Paradiso M. A.The representation of brightness in primary visual cortex. Science.1996; 273:1104-1107.

5Rossi A. F. & Paradiso M. A.Neural correlates of perceived brightness in the retina, lateral geniculate nucleus, and striate cortex. Journal of Neuroscience.1999; 19:6145-6156.

6MacEvoy S. P. & Paradiso M. A.Lightness constancy in primary visual cortex. Proceedings of the National Academy of Sciences.2001; 98:8827-8831.

7Shapley R.Visual sensitivity and parallel retinocortical channels. Annual review of psychology.1990; 41:635-658.

8Carandini M., Demb J. B., Mante V., Tolhurst D. J., Dan Y., Olshausen B. A., Gallant J. L. & Rust N. C.Do we know what the early visual system does? Journal of Neuroscience.2005; 25:10577-10597.

9Krukowski A. E., Troyer T. W. & Miller K. D.A model of visual cortical temporal frequency tuning. Neurocomputing.2001; 38:1379-1383.

10Herrmann C. S.Human eeg responses to 1–100 hz flicker: Resonance phenomena in visual cortex and their potential correlation to cognitive phenomena. Experimental brain research.2001; 137:346-353.

11Yuhui Chai e. a.Functional organization of visual temporal frequency pregerencr revealed by thalamo-visual correaltion. ISMRM.2018;

12Lerner Y., Honey C. J., Silbert L. J. & Hasson U.Topographic mapping of a hierarchy of temporal receptive windows using a narrated story. Journal of Neuroscience.2011; 31:2906-2915.

13Wilson S. M., Molnar-Szakacs I. & Iacoboni M.Beyond superior temporal cortex: Intersubject correlations in narrative speech comprehension. Cerebral cortex.2007; 18:230-242.

14Wandell B. A. Foundations of vision. Vol. 8 (Sinauer Associates Sunderland, MA, 1995).

15Kelly D.Spatiotemporal variation of chromatic and achromatic contrast thresholds. JOSA.1983; 73:742-750.

16Robson J. G.Spatial and temporal contrast-sensitivity functions of the visual system. JOSA.1966; 56:1141-1142.

17Bartels A. & Zeki S.The chronoarchitecture of the cerebral cortex. Philosophical Transactions of the Royal Society of London B: Biological Sciences.2005; 360:733-750.

18Bartels A., Zeki S. & Logothetis N. K.Natural vision reveals regional specialization to local motion and to contrast-invariant, global flow in the human brain. Cerebral cortex.2007; 18:705-717.

19Malinen S., Hlushchuk Y. & Hari R.Towards natural stimulation in fmri—issues of data analysis. Neuroimage.2007; 35:131-139.

20Rao H., Wang J., Tang K., Pan W. & Detre J. A.Imaging brain activity during natural vision using casl perfusion fmri. Human brain mapping.2007; 28:593-601.

21Pajula J., Kauppi J.-P. & Tohka J.Inter-subject correlation in fmri: Method validation against stimulus-model based analysis. PloS one.2012; 7:e41196.

22Aguirre G. K., Zarahn E. & D''esposito M.The variability of human, bold hemodynamic responses. Neuroimage.1998; 8:360-369.

23Henson R. N., Price C. J., Rugg M. D., Turner R. & Friston K. J.Detecting latency differences in event-related bold responses: Application to words versus nonwords and initial versus repeated face presentations. Neuroimage.2002; 15:83-97.

24Buckner R. L.Event‐related fmri and the hemodynamic response. Human brain mapping.1998; 6:373-377.

25Barbé K., Van Moer W. & Nagels G.Fractional-order time series models for extracting the haemodynamic response from functional magnetic resonance imaging data. IEEE Transactions on Biomedical Engineering.2012; 59:2264.

26YouTube.Charlie chapline: Circus (avi) full video [video file]. 2012;

27YouTube.Charlie chaplin – city lights 1931 [video file]. 2012;

28Penny W. D., Friston K. J., Ashburner J. T., Kiebel S. J. & Nichols T. E. Statistical parametric mapping: The analysis of functional brain images. (Elsevier, 2011).

29Pearson K.Note on regression and inheritance in the case of two parents. Proceedings of the Royal Society of London.1895; 58:240-242.

30Weisstein E. W.Student''s t-distribution. MathWorld--A Wolfram Web Resource.

31Benjamini Y. & Hochberg Y.Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological).1995; 289-300.

32Spunt B.Spunt/bspmview: Bspmview v.20161108 (version 20161108). Zenodo.2016;

33Boyaci H., Fang F., Murray S. O. & Kersten D.Responses to lightness variations in early human visual cortex. Current Biology.2007; 17:989-993.

34Frigo M. & Johnson S. G. in Acoustics, Speech and Signal Processing, 1998. Proceedings of the 1998 IEEE International Conference on. 1381-1384 (IEEE).

35Frigo M. in Acm sigplan notices. 169-180 (ACM).

36Oppenheim A. V. Discrete-time signal processing. (Pearson Education India, 1999).

37Research Imaging Institute U.Mango for the desktop. 2016;

38Catani M., Jones D. K., Donato R. & Ffytche D. H.Occipito‐temporal connections in the human brain. Brain.2003; 126:2093-2107.

39Rayleigh L.Xxxv. On the limit to interference when light is radiated from moving molecules. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science.1889; 27:298-304.

40Michelson A. A. Studies in optics. (Courier Corporation, 1995).

41Fox P. T., Miezin F. M., Allman J. M., Van Essen D. C. & Raichle M. E.Retinotopic organization of human visual cortex mapped with positron-emission tomography. Journal of Neuroscience.1987; 7:913-922.

42Slotnick S. D., Klein S. A., Carney T., Sutter E. & Dastmalchi S.Using multi-stimulus vep source localization to obtain a retinotopic map of human primary visual cortex. Clinical neurophysiology.1999; 110:1793-1800.

43Ungerleider L. G. & Haxby J. V.‘What’and ‘where’in the human brain. Current opinion in neurobiology.1994; 4:157-165.

44Başar-Eroglu C., Strüber D., Schürmann M., Stadler M. & Başar E.Gamma-band responses in the brain: A short review of psychophysiological correlates and functional significance. International Journal of Psychophysiology.1996; 24:101-112.

45Niedermeyer E. & da Silva F. L. Electroencephalography: Basic principles, clinical applications, and related fields. (Lippincott Williams & Wilkins, 2005).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔