(35.172.150.239) 您好!臺灣時間:2019/11/14 03:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
本論文永久網址: 
line
研究生:吳僕射
研究生(外文):Pu-Yeh Wu
論文名稱:人腦聽覺區於相同與橫跨皮質深度之特徵依賴性固有功能性連結研究
論文名稱(外文):Feature-dependent intrinsic functional connectivity within and across cortical depths in the human auditory cortex
指導教授:林發暄
口試委員:曾文毅郭文瑞蔡尚岳林士傑
口試日期:2018-10-12
學位類別:博士
校院名稱:國立臺灣大學
系所名稱:醫學工程學研究所
學門:工程學門
學類:綜合工程學類
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:51
中文關鍵詞:人腦聽覺區功能性磁共振影像射頻接收線圈陣列腦皮質層分析特徵依賴性固有功能性連結
DOI:10.6342/NTU201804179
相關次數:
  • 被引用被引用:0
  • 點閱點閱:11
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在大腦聽覺區對於聲音訊息的處理過程中,腦神經元對於不同頻率訊息的偏好與調頻的頻寬為兩項重要特徵。但聲音訊息不僅需要拆開於不同的頻帶進行處理,更需要在最後將訊息整合以獲得有意義的輸出。由於腦神經元已知在橫跨腦皮質層的方向有不同的連結型態,探討橫跨大腦聽覺區皮質深度的功能性連結將有助於理解聲音訊息的整合處理。在本篇論文中,我們使用功能性磁共振影像,搭配自製的磁共振影像接收線圈陣列與基於表面的腦皮質層分析,來研究人腦聽覺區於相同與橫跨皮質深度的頻率偏好、調頻頻寬依賴性的固有功能性連結。我們發現特徵依賴性的固有功能性連結存在於聽覺區核心與非核心區域的所有皮質深度。相同皮質深度的頻率偏好依賴性固有功能性連結,在聽覺區核心區域的深層較中間層與表層皮質擁有更高的選擇性。相同皮質深度的頻率偏好、調頻頻寬依賴性固有功能性連結,在聽覺區深層皮質的核心區域較非核心區域擁有更高的選擇性。進一步地分析橫跨皮質深度的固有功能性連結,我們發現類似的結果,且橫跨皮質深度的特徵依賴性固有功能性連結擁有之選擇性,會隨著兩個皮質深度的距離增加而下降。總結來說,本篇論文提供了證據說明人腦聽覺區擁有皮質深度專一的特徵依賴性固有功能性連結。
Frequency preference and spectral tuning are two cardinal features of information processing in the auditory cortex. However, sounds should not only be processed in separate frequency bands because information needs to be integrated to be meaningful. One way to better understand the integration of acoustic information is to examine the functional connectivity across cortical depths, as neurons are already connected differently across laminar layers. Using a tailored receiver array and surface-based cortical depth analysis, we revealed the frequency–preference as well as tuning–width dependent intrinsic functional connectivity (iFC) within and across cortical depths in the human auditory cortex using functional magnetic resonance imaging (fMRI). We demonstrated feature-dependent iFC in both core and noncore regions at all cortical depths. The selectivity of within-depth frequency–preference dependent iFC was higher at deeper depths than at intermediate and superficial depths in the core region. Both the selectivity of within-depth frequency–preference and tuning–width dependent iFC were stronger in the core than in the noncore region at deep cortical depths. Further analysis of cross-depth iFC shows similar results, while the selectivity of cross-depth feature-dependent iFC decreased when two cortical depths were farther away from each other. Taken together, our findings provide evidence for a cortical depth-specific feature-dependent functional connectivity in the human auditory cortex.
口試委員會審定書 --------------------------------------------------------------------------------------- I
誌謝 ------------------------------------------------------------------------------------------------- II
摘要 ------------------------------------------------------------------------------------------------ III
Abstract ---------------------------------------------------------------------------------------------- V
Table of contents ----------------------------------------------------------------------------------- VII
List of figures -------------------------------------------------------------------------------------- IX

1. Introduction --------------------------------------------------------------------------------------- 1
2. Methods -------------------------------------------------------------------------------------------- 4
2.1 Participants ------------------------------------------------------------------------------ 4
2.2 Auditory stimulation ---------------------------------------------------------------------- 5
2.3 Coil array construction ------------------------------------------------------------------- 6
2.4 MRI acquisition --------------------------------------------------------------------------- 7
2.5 Cortical surface reconstruction ----------------------------------------------------------- 9
2.6 Data analysis ---------------------------------------------------------------------------- 10
3. Results ------------------------------------------------------------------------------------------- 14
3.1 Verification of the 24-channel temporal lobe coil array performance ---------------------- 14
3.2 Verification of the surface-based cortical depth analysis at the auditory cortex ---------- 15
3.3 Analysis of functional properties across cortical depths --------------------------------- 16
3.4 Structural and functional examination of core and noncore regions ------------------------ 19
3.5 Analysis of feature-dependent intrinsic functional connectivity within cortical depths --- 22
3.6 Analysis of feature-dependent intrinsic functional connectivity across cortical depths --- 26
4. Discussion ---------------------------------------------------------------------------------------- 27
5. References ---------------------------------------------------------------------------------------- 33
6. Figures ------------------------------------------------------------------------------------------- 40
1. Robles, L. & Ruggero, M. A. Mechanics of the mammalian cochlea. Physiol Rev 81, 1305-1352 (2001).
2. King, A. J. & Nelken, I. Unraveling the principles of auditory cortical processing: can we learn from the visual system? Nat Neurosci 12, 698-701 (2009).
3. Merzenich, M. M. & Brugge, J. F. Representation of the cochlear partition of the superior temporal plane of the macaque monkey. Brain Res 50, 275-296 (1973).
4. Formisano, E. et al. Mirror-symmetric tonotopic maps in human primary auditory cortex. Neuron 40, 859-869 (2003).
5. Humphries, C., Liebenthal, E. & Binder, J. R. Tonotopic organization of human auditory cortex. Neuroimage 50, 1202-1211 (2010).
6. Rauschecker, J. P., Tian, B. & Hauser, M. Processing of complex sounds in the macaque nonprimary auditory cortex. Science 268, 111-114 (1995).
7. Wessinger, C. M. et al. Hierarchical organization of the human auditory cortex revealed by functional magnetic resonance imaging. J Cogn Neurosci 13, 1-7 (2001).
8. Moerel, M., De Martino, F. & Formisano, E. Processing of natural sounds in human auditory cortex: tonotopy, spectral tuning, and relation to voice sensitivity. J Neurosci 32, 14205-14216 (2012).
9. Reale, R. A., Brugge, J. F. & Feng, J. Z. Geometry and orientation of neuronal processes in cat primary auditory cortex (AI) related to characteristic-frequency maps. Proc Natl Acad Sci USA 80, 5449-5453 (1983).
10. Read, H. L., Winer, J. A. & Schreiner, C. E. Modular organization of intrinsic connections associated with spectral tuning in cat auditory cortex. Proc Natl Acad Sci USA 98, 8042-8047 (2001).
11. Rothschild, G., Nelken, I. & Mizrahi, A. Functional organization and population dynamics in the mouse primary auditory cortex. Nat Neurosci 13, 353-360 (2010).
12. Fukushima, M., Saunders, R. C., Leopold, D. A., Mishkin, M. & Averbeck, B. B. Spontaneous high-gamma band activity reflects functional organization of auditory cortex in the awake macaque. Neuron 74, 899-910 (2012).
13. Cha, K., Zatorre, R. J. & Schönwiesner, M. Frequency selectivity of voxel-by-voxel functional connectivity in human auditory cortex. Cereb Cortex 26, 211-224 (2016).
14. Mitani, A. & Shimokouchi, M. Neuronal connections in the primary auditory cortex: an electrophysiological study in the cat. J Comp Neurol 235, 417-429 (1985).
15. Matsubara, J. A. & Phillips, D. P. Intracortical connections and their physiological correlates in the primary auditory cortex (AI) of the cat. J Comp Neurol 268, 38-48 (1988).
16. Wallace, M. N., Kitzes, L. M. & Jones, E. G. Intrinsic inter- and intralaminar connections and their relationship to the tonotopic map in cat primary auditory cortex. Exp Brain Res 86, 527-544 (1991).
17. Atencio, C. A. & Schreiner, C. E. Columnar connectivity and laminar processing in cat primary auditory cortex. PLoS One 5, e9521 (2010).
18. Atencio, C. A. & Schreiner, C. E. Auditory cortical local subnetworks are characterized by sharply synchronous activity. J Neurosci 33, 18503-18514 (2013).
19. Atencio, C. A. & Schreiner, C. E. Functional congruity in local auditory cortical microcircuits. Neuroscience 316, 402-419 (2016).
20. Polimeni, J. R., Fischl, B., Greve, D. N. & Wald, L. L. Laminar analysis of 7 T BOLD using an imposed spatial activation pattern in human V1. Neuroimage 52, 1334-1346 (2010).
21. Ahveninen, J. et al. Intracortical depth analyses of frequency-sensitive regions of human auditory cortex using 7TfMRI. Neuroimage 143, 116-127, doi:10.1016/j.neuroimage.2016.09.010 (2016).
22. Hoogenraad, F. G. et al. Sub-millimeter fMRI at 1.5 Tesla: correlation of high resolution with low resolution measurements. J Magn Reson Imaging 9, 475-482 (1999).
23. Logothetis, N., Merkle, H., Augath, M., Trinath, T. & Ugurbil, K. Ultra high-resolution fMRI in monkeys with implanted RF coils. Neuron 35, 227-242 (2002).
24. Triantafyllou, C. et al. Comparison of physiological noise at 1.5 T, 3 T and 7 T and optimization of fMRI acquisition parameters. Neuroimage 26, 243-250, doi:10.1016/j.neuroimage.2005.01.007 (2005).
25. Ress, D., Glover, G. H., Liu, J. & Wandelld, B. Laminar profiles of functional activity in the human brain. Neuroimage 34, 74-84 (2007).
26. Koopmans, P. J., Barth, M. & Norris, D. G. Layer-specific BOLD activation in human V1. Hum Brain Mapp 31, 1297-1304 (2010).
27. Olman, C. A. et al. Layer-specific fMRI reflects different neuronal computations at different depths in human V1. PLoS One 7, e32536 (2012).
28. Huber, L. et al. Cortical lamina-dependent blood volume changes in human brain at 7 T. Neuroimage 107, 23-33 (2015).
29. Muckli, L. et al. Contextual feedback to superficial layers of V1. Curr Biol 25, 2690-2695 (2015).
30. Kok, P., Bains, L. J., van Mourik, T., Norris, D. G. & de Lange, F. P. Selective activation of the deep layers of the human primary visual cortex by top-down feedback. Curr Biol 26, 371-376 (2016).
31. Nasr, S., Polimeni, J. R. & Tootell, R. B. Interdigitated color- and disparity-selective columns within human visual cortical areas V2 and V3. J Neurosci 36, 1841-1857 (2016).
32. Scheeringa, R., Koopmans, P. J., van Mourik, T., Jensen, O. & Norris, D. G. The relationship between oscillatory EEG activity and the laminar-specific BOLD signal. Proc Natl Acad Sci USA 113, 6761-6766 (2016).
33. De Martino, F. et al. Frequency preference and attention effects across cortical depths in the human primary auditory cortex. Proc Natl Acad Sci USA 112, 16036-16041 (2015).
34. Moerel, M. et al. Sensitivity and specificity considerations for fMRI encoding, decoding, and mapping of auditory cortex at ultra-high field. Neuroimage pii: S1053-8119, 30284-30287 (2017).
35. Schreiner, C. E. & Mendelson, J. R. Functional topography of cat primary auditory cortex: distribution of integrated excitation. J Neurophysiol 64, 1442-1459 (1990).
36. Rauschecker, J. P. Cortical processing of complex sounds. Curr Opin Neurobiol 8, 516-521 (1998).
37. Kaas, J. H., Hackett, T. A. & Tramo, M. J. Auditory processing in primate cerebral cortex. Curr Opin Neurobiol 9, 164-170 (1999).
38. Brainard, D. H. The psychophysics toolbox. Spat Vis 10, 433-436 (1997).
39. Roemer, P. B., Edelstein, W. A., Hayes, C. E., Souza, S. P. & Mueller, O. M. The NMR phased array. Magn Reson Med 16, 192-225 (1990).
40. Reykowski, A., Wright, S. M. & Porter, J. R. Design of matching networks for low noise preamplifiers. Magn Reson Med 33, 848-852 (1995).
41. Possanzini, C. & Boutelje, M. Influence of magnetic field on preamplifiers using GaAs FET technology. Proc ISMRM 16, 1123 [Abstract] (2008).
42. Pruessmann, K. P., Weiger, M., Scheidegger, M. B. & Boesiger, P. SENSE: Sensitivity encoding for fast MRI. Magn Reson Med 42, 952-962, doi:Doi 10.1002/(Sici)1522-2594(199911)42:5<952::Aid-Mrm16>3.0.Co;2-S (1999).
43. Griswold, M. A. et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med 47, 1202-1210 (2002).
44. Dale, A. M., Fischl, B. & Sereno, M. I. Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179-194 (1999).
45. Fischl, B., Sereno, M. I. & Dale, A. M. Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage 9, 195-207 (1999).
46. Fischl, B. & Dale, A. M. Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proc Natl Acad Sci USA 97, 11050-11055 (2000).
47. Fischl, B., Sereno, M. I., Tootell, R. B. & Dale, A. M. High-resolution intersubject averaging and a coordinate system for the cortical surface. Hum Brain Mapp 8, 272-284 (1999).
48. Talavage, T. M. et al. Tonotopic organization in human auditory cortex revealed by progressions of frequency sensitivity. J Neurophysiol 91, 1282-1296 (2004).
49. Striem-Amit, E., Hertz, U. & Amedi, A. Extensive cochleotopic mapping of human auditory cortical fields obtained with phase-encoding fMRI. PLoS One 6, e17832 (2011).
50. Wasserthal, C., Brechmann, A., Stadler, J., Fischl, B. & Engel, K. Localizing the human primary auditory cortex in vivo using structural MRI. Neuroimage 93 Pt 2, 237-251, doi:10.1016/j.neuroimage.2013.07.046 (2014).
51. Schonwiesner, M., Dechent, P., Voit, D., Petkov, C. I. & Krumbholz, K. Parcellation of Human and Monkey Core Auditory Cortex with fMRI Pattern Classification and Objective Detection of Tonotopic Gradient Reversals. Cereb Cortex 25, 3278-3289, doi:10.1093/cercor/bhu124 (2015).
52. Sugimoto, S., Sakurada, M., Horikawa, J. & Taniguchi, I. The columnar and layer-specific response properties of neurons in the primary auditory cortex of Mongolian gerbils. Hear Res 112, 175-185 (1997).
53. Guo, W. et al. Robustness of cortical topography across fields, laminae, anesthetic states, and neurophysiological signal types. J Neurosci 32, 9159-9172 (2012).
54. Kanold, P. O., Nelken, I. & Polley, D. B. Local versus global scales of organization in auditory cortex. Trends Neurosci 37, 502-510 (2014).
55. Da Costa, S. et al. Human primary auditory cortex follows the shape of Heschl''s gyrus. J Neurosci 31, 14067-14075 (2011).
56. Felleman, D. J. & Van Essen, D. C. Distributed hierarchical processing in the primate cerebral cortex. Cereb Cortex 1, 1-47 (1991).
57. Harris, K. D. & Mrsic-Flogel, T. D. Cortical connectivity and sensory coding. Nature 503, 51-58, doi:10.1038/nature12654 (2013).
58. Meyer, M., Liem, F., Hirsiger, S., Jäncke, L. & Hänggi, J. r. Cortical surface area and cortical thickness demonstrate differential structural asymmetry in auditory-related areas of the human cortex. Cereb Cortex 24, 2541-2552 (2014).
59. Burge, W. K. et al. Cortical thickness in human V1 associated with central vision loss. Sci Rep 6, 23268 (2016).
60. Maass, A. et al. Laminar activity in the hippocampus and entorhinal cortex related to novelty and episodic encoding. Nat Commun, 5:5547 (2014).
61. Seidkhani, H. et al. Task modulates functional connectivity networks in free viewing behavior. Neuroimage 159, 289-301 (2017).
62. Fries, P., Reynolds, J. H., Rorie, A. E. & Desimone, R. Modulation of oscillatory neuronal synchronization by selective visual attention. Science 291, 1560-1563 (2001).
63. Nandy, A. S., Nassi, J. J. & Reynolds, J. H. Laminar organization of attentional modulation in macaque visual area V4. Neuron 93, 235-246 (2017).
64. Hansen, B. J. & Dragoi, V. Adaptation-induced synchronization in laminar cortical circuits. Proc Natl Acad Sci U S A 108, 10720-10725 (2011).
65. De Martino, F. et al. Cortical depth dependent functional responses in humans at 7T: improved specificity with 3D GRASE. PLoS One 8, e60514 (2013).
66. Boxerman, J. L., Hamberg, L. M., Rosen, B. R. & Weisskoff, R. M. MR contrast due to intravascular magnetic susceptibility perturbations. Magn Reson Med 34, 555-566 (1995).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔