跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.85) 您好!臺灣時間:2025/01/21 17:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:葉晉宏
研究生(外文):YE, JIN-HONG
論文名稱:以網印機製備二氧化鈦薄膜應用於染料敏化太陽能電池之研究
論文名稱(外文):Study on Preparation of Tio2 Film by Screen Printing Machine for Dye Sensitized Solar Cells
指導教授:閔庭輝
指導教授(外文):MEEN, TEEN-HANG
口試委員:閔庭輝朱聖緣水瑞鐏楊弘敦
口試委員(外文):MEEN, TEEN-HANGCHU, SHENG-YUANWATER, WALTERYANG, HUNG-DUEN
口試日期:2019-07-27
學位類別:碩士
校院名稱:國立虎尾科技大學
系所名稱:電子工程系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:56
中文關鍵詞:染料敏化太陽電池二氧化鈦網版印刷
外文關鍵詞:Dye-Sensitized Solar CellsTiO2Screen Printing
相關次數:
  • 被引用被引用:0
  • 點閱點閱:153
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
此篇論文是染料敏化太陽能電池工作電極製備的相關研究。工作電極的塗層厚度、均勻性、表面修飾均會影響染料敏化太陽能電池之能源轉換效率。本研究探討工作電極塗層製備方法、多層二氧化鈦結構堆疊與工作電極表面修飾對染料敏化太陽能電池性能之影響,我們亦將著重於網版印刷製成實作。使用不同二氧化鈦塗層製作方式須搭配使用不同配方的塗佈染料,其中網印法使用的漿料所需之黏度與刮刀法所使用的漿料黏度高。研究利用P25與P100奈米顆粒調配製合適塗佈印刷之漿料並比較EC等TiO2漿料,依據不同參雜濃度來比較光電轉換效率,P25與P100粉末配製而成漿料以後者形成的塗膜製密性較佳,染料的吸附量較多,所得能源轉換效率也較高。使用平面印刷方法製備電極中,網印速度為11 mm/s的印刷參數下,製備的塗層均勻度較佳,我們亦可藉由多層二氧化鈦結構堆疊,使得塗層達到較佳的厚度。在P100摻雜0.5g時其效率高達了4.77%,乙基纖維素摻雜量為0.25wt%時其效率達到了4.86%。
This work studies the preparation of the working electrode of the dye-sensitized solar cells. The thickness of the electrode of the working electrode, the uniformity of the coating layer, the surface condition of the electrode will affect the photoelectric conversion efficiency of the dye-sensitized solar cells. The effects of the screen printing parameters used for the preparation of the working electrode and the multilayer working electrode structure on the photoelectric conversion efficiency of the dye-sensitized solar cells were investigated. The screen printing technique requires a relatively high viscosity coating paste, compared to the coating paste for doctor blading method. This study used P25 and P100 TiO2 nanoparticle to prepare a suitable coating and printing paste. The uniformity of the coating layer is formed using the screen printing technique with the squeegee coating speed of 11 mm s-1, and we can also stack the multilayer TiO2 nanostructure to achieve a better thickness of the coating. The efficiency was as high as 4.77% when P100 was doped with 0.5g, and the efficiency was 4.86% when the amount of ethylcellulose was 0.25wt%.
摘要....i
Abstract........ii
誌謝....iii
目錄....iv
表目錄...vii
圖目錄...viii
第一章 序論....1
1.1前言..1
1.2 染料敏化太陽能電池簡介........2
1.3 研究動機.....3
第二章 理論與文獻回顧.....4
2.1 太陽能電池簡介....... 4
2.1.1 太陽能電池種類......4
2.1.2太陽光譜特性........6
2.1.3太陽能電池原理.......7
2.2 二氧化鈦基本性質......8
2.2.1 二氧化鈦基本結構....8
2.3 染料敏化太陽能電池....10
2.3.1 染料敏化太陽能發展歷史......10
2.3.2 染料敏化太陽能工作原理與傳輸損失......10
2.3.3 染料敏化太陽能電池之結構.....13
2.2.4 塗佈技術...18
第三章 實驗步驟與設備....20
3.1實驗藥品與儀器設備.....20
3.1.1 實驗藥品...20
3.1.2 實驗儀器設備.......21
3.2實驗步驟......23
3.2.1 基板清洗...23
3.2.2 製備二氧化鈦光陽極..23
3.2.3對電極製作..23
3.2.4染料與電解液之製備...23
3.2.5元件封裝....24
3.3分析儀器應用原理.......25
3.3.1紫外光極可見光吸收光譜儀(UV-visible)..25
3.3.2場發射掃描式電子顯微鏡分析....25
3.3.3染料敏化太陽能電池之光電轉換效率.......26
3.3.4電化學交流阻抗分析儀(Electrochemical Impedance Spectroscopy, EIS)....28
3.3.5入射光電轉換效率測量儀(Incident Photon Conversion Efficiency, IPCE)..32
第四章 結果與討論.34
4.1 二氧化鈦薄膜之特性分析........34
4.2 染料敏化太陽能電池的特性之分析.39
4.2.1參雜二氧化鈦P100之紫外光-可見光分光光譜分析....39
4.2.2參雜二氧化鈦P100染敏電池元件效率之分析.40
4.2.3參雜二氧化鈦P100染敏電池交流阻抗分析...41
4.2.4參雜二氧化鈦P100染敏電池IPCE之分析....42
4.2.5參雜乙基纖維素染敏電池元件效率之分析...43
4.2.6參雜乙基纖維素染敏電池元件交流阻抗之分析........44
4.2.7參雜乙基纖維素染敏電池元件IPCE之分析...45
第五章 結論......46
未來展望.47
參考文獻.48
Extended Abstract.......52

[1] 1.W.Xu, Z. Xie, X. Cui, K. Zhao, L. Zhang,G. Dietrich, K. M. Dooley and Y. Wang, ACS Appl. Mater. Interfaces, 2015,7,22533-22541.
[2] W.Xu,K. Zhao, L. Zhang, Z. Xie, Z. Xie, Z. Cai and Y. Wang,J.Alloys Compd., 2016,654,357-362.
[3] Z.Wang,N. Kumar and J. J.Spivey,J. Catal.,2-13,339,1-8.
[4] G.Prieto, S. Beijer, M. L. Smith, M. He,Y. Au, Z.Wang.D. A. Bruce,K. P.de Jong,J.J. Spivey and P. E. de Jongh,angew. Chem., Int. Ed.,2014,53,6397-6401.
[5] I. S. Jacobs and C. P. Bean, Magnetism, 3, G. T. Rado and H. Suhl, Eds., New York: Academic Press, 1963, pp. 271-350.
[6] 沈世宏,2011,”中華民國第二版國家通訊”,行政院環保署。
[7] M. Smith, “Title of paper optional here,” unpublished.
[8] K. Rose, “Title of paper with only first word capitalized,” in press.
[9] Y. Yorozu, et al., IEEE Trans. J. Magn. Japan, 2, pp. 740-741, August 1987 [Digests 9th Annual conf. Magn. Japan, p. 3012, 1982]
[10] U. Bach, D. Lupo, P. Comte, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer and M. Gratzel, Nature, 1998, 395, 583–585.
[11] X. Luan and Y. Wang, J. Phys. Chem. C, 2014, 118, 18917– 18923.
[12] X. Luan and Y. Wang, J. Mater. Sci. Technol., 2014, 30, 1–7.
[13] 蘇美惠,2017,”太陽光電發展現況與台灣大規模應用推動策略建議”,東華大學。
[14] M. Grätzel, 2001, “Photoelectrochemical cells ”,Nature,414,338-344.
[15] B.O’Regan and M. Grätzel, 1991, “A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films”, Nature,353,737-740.
[16] P. Wang, S M. Zakeeruddin , P. Comte, I. Exnar and M.Grätzel, 2003, “An efficient organogelator for ionic liquids to prepare stable quasi-solidstate dye-sensitized solar cells”, Journal of the American Chemical Society, 125, 1166-1167.
[17] D. Kuang, P. Wang, S. Ito, S.M. Zakeeruddin, M. Grätzel, 2006. “Stable mesoscopic dye sensitized solar cells based on tetracyanoborate ionic liquid electrolyte”, Journal of the American Chemical Society , 128, 7732-7733.
[18] P.Wang,SM Zakeeruddin,JE Moser,MKNazeeruddin,T.Seikiguchi M.Grätzel, 2003,” A stable quasi-solid-state dye-sensitized solar cell with an amphiphilic ruthenium sensitizer and polymer gel electrolyte”, Nature Material, 2, 402.

[19] 翁敏航,”太陽能電池:原理、元件、材料、製程與檢測技術”,東華書局,2010。
[20] 黃建昇,2003,”結晶矽太陽電池發展近況” ,工業材料雜誌,203 期,頁150-155。
[21] 郭明村,2003,”薄膜太陽電池發展近況”,工業材料雜誌, 203期,頁138-142。
[22] Brittany L. Oliva-Chatelain, Andrew R. Barron, 2008,“An Introduction to Solar Cell ” Technology.
[23] 林明獻,2008,”太陽能電池技術入門”,全華圖書出版。
[24] Ulrike Diebold, 2003, “The surface science of titanium dioxide”, surface science reports, 48, pp. 53 ~ 229.
[25] H. Tsubomura, M. Matsumura, Y. Nomura, T. Amamiya, 1976, “Dye-sensitized zinc oxide/aqueous electrolyte/platinum photocell”, Nature, 261, 402-403.
[26] Russell F. Howe , Michael Gratzel, 1985, “EPR observation of trapped electrons in colloidal titanium dioxide”, J. Phys. Chem., 89 (21), 4495-4499.
[27] B. O'Regan, M. Grätzel, A Low-cost, 1991, “A low-cost, high-efficiency solar cell based on Dye-sensitized colloidal TiO2 Films”, Nature, 353, 737-740.
[28] A. Hagfeldt, M. Grätzel, 2000, “Molecular photovoltaics”, Acc. Chem. Res., 33(5), 269-277.
[29] Mohammad K. Nazeeruddin, Filippo De Angelis, SimonaFantacci, AnnabellaSelloni, Guido Viscardi, Paul Liska, Seigo Ito, BesshoTakeru, and Michael Grätzel, 2005, “Combined Experimental and DFT-TDDFT Computational Study of Photoelectrochemical Cell Ruthenium Sensitizers”, J. Am. Chem. Soc., 127(48), 16835-16847.
[30] Aswani Yella, Hsuan-Wei Lee, Hoi NokTsao, Chenyi Yi, Aravind Kumar Chandir`an, Md.KhajaNazeeruddin, Eric Wei-GuangDiau, Chen-Yu Yeh, Shaik M Zakeeruddin, Michael Grätzel, 2011, “Porphyrin-Sensitized Solar Cells with Cobalt (II/III)–Based Redox Electrolyte Exceed 12 Percent Efficiency”, 334, 629-634.
[31] 劉茂煌,2002,”奈米光電池”,工業材料雜誌,203期,頁1~49。
[32] T. Horiuchi, H. Miura, S. Uchida, 2003, “Highly-efficient metal-free organic dyes for dye-sensitized solar cells”, Chem. Commun., 24, 3036-3037.
[33] T. Horiuchi, H. Miura, K. Sumioka, S. Uchida, 2004, “High Efficiency of Dye-Sensitized Solar Cells Based on Metal-Free Indoline Dyes”, Journal of the American Chemical Society, 126(39), 12218-12219.
[34] 薛惟聰,2008,”新型含雙噻吩環戊烷之有機小分子光敏化染料的合成與性質探討”,國立中央大學化學研究所碩士論文。



[35] Md. K. Nazeeruddin, S. M. Zakeeruddin, R. Humphry-Baker, M. Jirousek, P. Liska, N. Vlachopoulos, V. Shklover, Christian-H. Fischer, M. Grätzel, 1999, “Acid−Base Equilibria of (2,2‘-Bipyridyl-4,4‘- dicarboxylic acid)ruthenium(II) Complexes and the Effect of Protonation on Charge-Transfer Sensitization of NanocrystallineTitania”, Inorg. Chem., 38(26), 6298-6305.
[36] Michael Grätzel, 2005, “Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells”, Inorganic Chemistry, 44(20), 6841-6851.
[37] A. Mishra, M. K. R. Fischer, P. Bäuerle, 2009, “Metal-Free Organic Dyes for Dye-Sensitized Solar Cells: From Structure: Property Relationships to Design Rules”, Angew. Chem. Int. Ed., 48, 2474-2499.
[38] A. Hauch, A. Georg, 2001, “Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells”, ElectrochimicaActa, 46, 3457-3466.
[39] A. Kay and M. Grätzel, 1996, “Low cost photovoltaic modules based on dye sensitized nanocrystalline titanium dioxide and carbon powder”, Solar Energy Materials and Solar Cells, 44, 99-117.
[40] Kristofer Fredin, 2007, “Studies of Charge Transport Processes in Dye-Sensitized Solar Cells”, KTH.
[41] G. Franco, J. Gehring, L. M. Peter, E. A. Ponomarev, I. Uhlendorf, 1998, “Frequency-Resolved Optical Detection of Photoinjected Electrons in Dye-Sensitized Nanocrystalline Photovoltaic Cells”, Journal of Physical Chemistry B, 103(4), 692-698.
[42] B. A. Gregg, F. Pichot, S. Ferrere, C. L. Fields, 2001, “Interfacial Recombination Processes in Dye-Sensitized Solar Cells and Methods To Passivate the Interfaces”, Journal of Physical Chemistry B, 105(7), 1422-1429.
[43] P. Wang, R. H. Baker, J. E. Moser, S. M. Zakeeruddin, M. Grätzel, 2004, “Amphiphilic Polypyridyl Ruthenium Complexes with Substituted 2,2'-Dipyridylamine Ligands for Nanocrystalline Dye-Sensitized Solar Cells”, Chemistry of Materials, 16(17), 3246-3251.
[44] G.R.A. Kumara, S. Kaneko, M. Okuya, K. Tennakone, 2002, “Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuI Crystal Growth Inhibitor”, Langmuir, 18(26), 10493-10495.
[45] Q. B. Meng, K. Takahashi, X. T. Zhang, I. Sutanto, T. N. Rao, O. Sato, A. Fujishima, 2003, “Fabrication of Dye-Sensitized Solar Cells Using Triethylamine Hydrothiocyanate as a CuI Crystal Growth Inhibitor”, Langmuir, 19(9), 3572-3574.



[46] A. Noda, K. Hayamizu, M. Watanabe, 2001, “Pulsed-Gradient Spin-Echo 1H and 19F NMR Ionic Diffusion Coefficient, Viscosity, and Ionic Conductivity of Non-Chloroaluminate Room-Temperature Ionic Liquids”, Journal of Physical Chemistry B, 105(20), 4603-4610.
[47] 黃子為,2014,”網版印刷技術應用於染料敏化太陽能電池之研究”,國立中興大學化學工程學系碩士學位論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊