跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/18 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:韓博宇
研究生(外文):Han, Bo-Yu
論文名稱:含有Benzodithiophene-4,8-dione單元的有機染料及其在敏化太陽能電池之應用
論文名稱(外文):Organic Dyes Containing Benzodithiophene-4,8-dione Core for Dye-sensitized Solar Cells
指導教授:蘇平貴蘇平貴引用關係林建村林建村引用關係
指導教授(外文):Su, Pi-GueyLin, Jiann-T'suen
口試委員:蘇平貴林建村孫世勝蔡啟堂
口試委員(外文):Su, Pi-GueyLin, Jiann-T'suenSun, Shih-shengTsai, Chiitang
口試日期:2019-06-26
學位類別:碩士
校院名稱:中國文化大學
系所名稱:化學系應用化學碩士班
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:83
中文關鍵詞:染料敏化太陽能電池
外文關鍵詞:dye-sensitized solar cells
相關次數:
  • 被引用被引用:0
  • 點閱點閱:123
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用Friedel–Craft醯化反應Stille偶合反應、Vilsmeier-Haack醛化反應及Knoevenagel縮合反應等化學方法,合成以benzodithiophene-4,8-dione (BDD)單元作為共軛骨架核心的D‒A‒π‒A型染料,BY1與BY2,並應用於染敏化太陽能電池。
在BDD單元兩邊各引入一個噻吩環後,三個噻吩環(terthiophene)基本上可以維持共面而有利於電子供體與受體間的電荷轉移,而BDD單元中的carbonyl group可以降低染料的能隙,透過BDD單元上之烷基鏈也可增加染料分子在溶劑中的溶解度,且有助於抑制暗電流。本研究因此利用BDD單元來建構敏化太陽能電池之光敏染料,並進行元件測試。
但由於高的平面性容易造成分子間的堆疊且與相當嚴重的電子捕獲(electron trapping)效應,導致電子注入TiO2薄膜的機會減少,造成染敏化電池的低效率(BY1 = 2.41%, BY2 = 1.23%)。其中的較高元件效率可歸諸於較高的染料吸附度,導致較高的光電流,以及較佳的暗電流抑制能力,導致交高的光電壓之故。
The new metal free organic dyes containing benzodithiophene-4,8-dione Core(BY1 and BY2) have been synthesized via Friedel-Crafts Acylation, Suzuki coupling, Stille coupling, Vilsmeier-Haack formylation and Knoevenagel condensation reactions. These dyes were used as sensitizers for dyesensitized solar cells (DSSCs).
Introducing a thiophene ring on each side of the BDD unit, the terthiophene can maintain coplanarity and facilitate charge transfer between the electron donor and the acceptor, and the carbonyl group in the BDD unit can reduce the dye energy band gap. Introducing the alkyl chain on the BDD unit can increases the solubility of the dye molecule in the solvent and helps to suppress dark current. In this paper, the BDD unit is used to construct the photosensitive dye for sensitized solar cells and to device performence testing.
     However, due to the high planarity, it is easy to cause inter-molecular stacking and a relatively serious electron trapping effect, resulting in a reduced chance of electron injection into the TiO2 film, resulting in low efficiency of the dye-sensitized battery (BY1 = 2.41%, BY2 = 1.23%)
摘要 3
Abstract 4
圖目錄 7
表目錄 9
附圖目錄 10
第1章、 緒論 11
1-1、 前言 11
1-2、 太陽光譜 11
1-3、 太陽能電池介紹 13
1-3-1、 矽晶類太陽能電池 14
1-3-2、 化合物太陽能電池 15
1-3-3、 鈣鈦礦太陽能電池(Perovskite Solar Cells,PSC) 16
1-3-4、 量子點太陽能電池(Quantum Dot Sensitized Solar Cells,QDSC) 17
1-3-5、 有機染料太陽能電池 17
1-4、 有機染敏化太陽能電池 22
1-4-1、 有機染料敏化太陽能電池元件組成 22
1-4-2、 有機染料敏化太陽能電池運作機制 26
1-4-3、 有機染料敏化太陽能電池參數介紹 28
1-5、 研究動機 31
第2章、 實驗方法與過程說明 35
2-1、 實驗儀器 35
2-2、 實驗藥品 36
2-3、 實驗步驟 39
● 化合物 BDD 之合成步驟: 39
● 化合物 BY-CHO 之合成步驟: 41
● 化合物 BY1 之合成步驟: 44
● 化合物 BY2 之合成步驟: 46
2-4、太陽能電池元件製作 49
第3章、 結果與討論 51
3-1、 染料BY1與BY2 51
3-1-1、 染料之合成 51
3-1-2、 化合物生成之關鍵反應 52
3-2、 染料之光學與電化學性質 56
3-2-1、 光學性質 56
3-2-2、 電化學性質 59
3-3、 元件效率與相關量測之探討 61
3-3-1、 BY1與BY2染料元件效率表現探討 61
3-3-1、 BY1與BY2染料元件EIS性質探討 63
3-4、 理論計算 64
第4章、 結論 71
參考文獻 72
附錄 79

1.M. Grätzel, Solar Energy Conversion by Dye-Sensitized Photovoltaic Cells, Inorg. Chem. 2005, 44, 6841.
2.H. Kallmans; M. Pope, Photovoltaic effect in organic crystals, J. Chem. Phys. 1958, 30, 585.
3.C. Fritts, On the fritts selenium cells and batteries, Van Nostrand’s Engineering Magazine 1885, 32, 388.
4.D. M. Chapin; C. S. Fuller; G. L. Pearson, A new silicon p-n junction photocell for converting solar radiation into electrical power, J. Appl. Phys. 1954, 25, 676.
5.K. Masuko; M. Shigematsu; T. Hashiguchi; D. Fujishima; M. Kai; N. Yoshimura; T. Yamaguchi; Y. Ichihashi; T. Mishima; N. Matsubara; T. Yamanishi; T. Takahama; M. Taguchi; E. Maruyama; S. Okamoto, Achievement of more than 25% conversion efficiency with crystalline silicon heterojunction solar cell” IEEE J. Photovoltaics 2014, 4, 1433.
6.W. Deng; D. Chen; Z. Xiong; P. J. Verlinden; J. W. Dong; F. Ye; H. Li; H. J. Zhu; M. Zhong; Y. Yang; Y. F. Chen; Z. Q. Feng, Altermatt p. 20.8% perc solar cell on 156 mm x 156 mm p-type nulticrystalline silicon substrate, IEEE J. Photovoltaics 2016, 6, 3.
7.W. Qarony, M. I. Hossain, M. K. Hossai, M. J. Uddin, A. Haque, A. R. Saad, Efficient amorphous silicon solar cells: characterization, optimization,and optical loss analysis, Results in Phys. 2017, 7, 4287.
8.郭明村, 「薄膜太陽能電池發展近況」, 工業材料雜誌, 2003, 203, 138.
9.(a) A. R. bin Mohd Yusoff; Md. K. Nazeeruddin, Organic halide lead pervoskites for photovoltaic applictions, J. Phys. Chem. Lett. 2016, 7, 851. (b) H. Snaith, Pervoskites: the emergence of a new era for low-cost high-efficiency solar cells, J. Phys. Chem. Lett. 2013, 4, 3623.
10.(a) G. H. Carey; A. L. Abdelhady; Z. Ning; S. M. Thon; O. M. Bakr; E. H. Sargent, Colloidal quantum dot solar cells, Chem. Rev. 2015, 115, 12732. (b) W. Li; X. Zhong, Capping ligand-induced self-assembly for quantum dot sensitized solar cells, J. Phys. Chem. Lett. 2015, 6, 796. (c) J. Wang, Y. Li, Q. Shen; T. Izuishi; Z. Pan; K. Zhaoa; X. Zhong, Mn doped quantum dot sensitized solar cells with power conversion efficiency exceeding 9%, J. Mater. Chem. A 2016, 4, 877.
11.J. Yu,; W. Wang; Z. Pan; J. Du; Z. Ren; W. Xue; X. Zhong, Quantum dot sensitized solarcells with efficiency over 12% based on tetraethyl orthosilicate additive in polysulfide electrolyte, J. Mater. Chem. A 2017, 5, 14124.
12.National Renewable Energy Laboratory. NREL Best Research Cell Efficiencies Chart; http://www.nrel.gov/ncpv/images/efficiency_ chart.jpg.
13.F. Hurd; R. Livingston, The quantum yields of some dye-sensitized photooxidations, J. Phys. Chem. 1940, 44, 865.
14.G. Oster; J. S. Bellin; R. W. Kinball; M. E. Scharder, Dye sensitized photoöxidation, J. Am. Chem. Soc. 1959, 81, 5095.
15.H. Tsubomura; M. Mastsumumuera; Y. Nomura; T. Amamiya, Dye sensitised zinc oxide: aqueous electrolyte: platinum photocell, Nature 1976, 261, 402.
16.B. O. Regan; M. Grätzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 1991, 353, 737.
17.M.. K. Nazeeruddin; A. Key; I. Rodicio; R. Humphry-Baker; E. Mueller; P. Liska; N. Vlachopoulos; M. Gräetzel, Conversion of light to electricity by cis-X2 bis(2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes, J. Am. Chem. Soc. 1993, 115, 6382.
18.M. K. Nazeeruddin; P. Péchy; T. Renouard; S. M. Zakeeruddin; R. Humphry-Baker; P. Comte; P. Liska; L. Cevey; E. Costa; V. Shklover; L. Spiccia; G. B. Deacon; C. A. Bignozzi and M. Grätzel, Engineering of efficient panchromatic sensitizers for nanocrystalline TiO2-based solar cells, J. Am. Chem. Soc. 2001, 123, 1613.
19.M. K. Nazeeruddin; F. D. Angelis; S. Fantacci; A. Selloni; G. Viscardi; P. Liska; S. Ito; B. Takeru and M. Grätzel, Combined experimental and dft-tddft computational study of photoelectrochemical cell ruthenium sensitizers, J. Am. Chem. Soc. 2005, 127, 16835.
20.F. Gao; Y. Wang; D. Shi; J. Zhang; M.Wang; X. Jing; R. Humphry-Baker; P. Wang; S. M. Zakeeruddin; M. Grätzel, Enhance the optical absorptivity of nanocrystalline TiO2 film with high molar extinction coefficient ruthenium sensitizers for high performance dye-sensitized solar cells, J. Am. Chem. Soc. 2008, 130, 10720.
21.C. Y. Chen; M. Wang; J. Y. Li; N. Pootrakulchote; L. Alibabaei; C. Ngoc-le; J. D. Decoppet; J. H. Tsai; C. Grätzel; C. G. Wu; S. M. Zakeeruddin; M. Grätzel, Highly efficient light-harvesting ruthenium sensitizer for thin-film dye-sensitized solar cells, ACS Nano 2009, 3, 3103.
22.A. Yella; H. W. Lee; H. N. Tsao; C. Yi; A. K. Chandiran; M.. K. Nazeeruddun; E.W. Diau; C. Y. Yeh; S. M. Zakeeruddin; M. Grätzel, Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency, Science 2011, 334, 629.
23.S. Mathew; A. Yella; P. Gao; R. Humphry-Baker; B. F. Curchod; N. Ashari-Astani; I. Tavernelli; U. Rothlisberger; Md. K. Nazeeruddin; M. Grätzel, Dye-sensitized solar cells with 13% efficiency achieved through the molecular engineering of porphyrin sensitizers, Nat. Chem. 2014, 6, 242.
24.Z. Yao;  H. Wu; Y. Li; J. Wang; J. Zhang;  M. Zhang;  Y. Guo; P. Wang, Dithienopicenocarbazole as the kernel module of low-energy-gap organic dyes for efficient conversion of sunlight to electricity, Energy Environ. Sci., 2015, 8, 3192.
25.K. Kakiage; Y. Aoyama; T. Yano; K. Oya; J.-i. Fujisawa;  M. Hanaya, Highly-efficient dye-sensitized solar cells with collaborative sensitization by silyl-anchor and carboxy-anchor dyes, Chem. Commun. 2015, 51, 15894.
26.N. Robertson, Optimizing dyes for dye-sensitized solar cells, Angew. Chem. Int. Ed. 2006, 45, 2338.
27.M. K. Nazeeruddin; R. Humphry-Baker; P. Liska; M. Grätzel, Investigation of sensitizer adsorption and the influence of protons on current and voltage of a dye-sensitized nanocrystalline TiO2 solar cell, J. Phys. Chem. B 2003, 107, 8981.
28.M .Velusamy; K. R. Justin Thomas; J. T. Lin; Y.-C. Hsu; K.-C. Ho, Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells, Org. Lett. 2005, 7, 1899.
29.H.-H. Chou; Y.-C. Chen; H.-J. Huang; T.-H. Lee; J. T. Lin; C. Tsai; K. Chen, High-performance dye-sensitized solar cells based on 5,6-bis-hexyloxy-benzo[2,1,3]thiadiazole, J. Mater. Chem. 2012, 22, 10929.
30.V. Marappan; K. R. Justin Thomas; J. T. Lin; Y.-C. Hsu; K.-C. Ho, Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells, Org. Lett. 2005, 7, 1899.
31.J. Mao; F. Guo; W. Ying; W. Wu; J. Li; J. Hua, Benzotriazole-bridged sensitizers containing a furan moiety for dye-sensitized solar cells with high open-circuit voltage performance, Chem Asian J. 2012, 7), 982.
32.S. Chaurasia; C.-Y. Hsu; H.-H. Chou; J. T. Lin, Synthesis, optical and electrochemical properties of pyridal[2,1,3]thiadiazole based organic dyes for dye sensitized solar cells, Org. Electron. 2014, 15, 378.
33.S. Chaurasia; W.i-I Hung; H.-H. Chou; J. T. Lin, Incorporating a New 2H-[1,2,3]Triazolo[4,5-c]pyridine Moiety To Construct D–A−π–A Organic Sensitizers for High Performance Solar Cells, Org. Lett. 2014, 16, 3052.
34.J.-S. Ni; J.-H. You; W.-I Hung; W.-S. Kao; H.-H. Chou; J. T. Lin, Organic dyes incorporating the dithieno[3',2':3,4;2'',3'':5,6]benzo[1,2-c]furazan moiety for dye-sensitized solar cells, ACS Applied Mater. Interfaces 2014, 6, 22612.
35.J.-S. Ni; W.-S. Kao; H.-J. Chou; J. T. Lin, Organic dyes incorporating the dithieno[3,2-f:2',3'-h]quinoxaline moiety for dye-sensitized solar cells. ChemSusChem 2015, 8, 2932.
36.J.-S. Ni; Y.-C. Yen; J. T. Lin, Organic sensitizers with a rigid dithienobenzotriazole-based spacer for high performance dye-sensitized solar cells. J. Mater. Chem. A 2016, 4, 6553.
37.Y. Huo; X.-T. Gong; T.-K. Lau; T. Xiao; C. Yan; X. Lu, G. Lu; X. Zhan; H.-L. Zhang, Dual-Accepting-Unit Design of Donor Material for All-Small-Molecule Organic Solar Cells with Efficiency Approaching 11%, Chem. Mater.2018, 30, 23, 8661-8668.
38.C. Friedel; J. M. Crafts, The alkylation or acylation of aromatic compounds catalyzed by aluminum chloride or other Lewis acids, Compt. Rend. 1877, 84, 1392.
39.D. Milstein; J. K. Stille, A general, selective, and facile method for ketone synthesis from acid chlorides and organotin compounds catalyzed by palladium, J. Am. Chem. Soc. 1978, 100, 3636.
40.G. Jones; S. P. Stanforth, The Vilsmeier Reaction of Non-Aromatic Compounds, Org. React. 2000, 56, 355.
41.E. Knoevenagel, Condensation von malonsäure mit aromatischen aldehyden durch ammoniak und amine, Ber. Dtsch. Chem. Ges. 1898, 31, 2596.
42.K. R. Justin Thomas; Y.-C. Hsu; J. T. Lin; K.-M. Lee; K.-C. Ho; C.-H. Lai; Y.-M. Cheng; P.-T. Chou. 2,3-Disubstituted Thiophene-Based Organic Dyes for Solar Cells, Chem. Mater. 2008, 20, 1830
43.S. Chaurasia; J. T. Lin, Metal-Free Sensitizers for Dye-Sensitized Solar Cells, Chem. Record 2016, 16, 1311.
R. C. Hiborn, Einstein coefficients, cross sections, f values, dipole moments, and all that, Am. J. Phys., 1982, 50, 982.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top