跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/07/27 08:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾文駿
研究生(外文):TSENG, WEN-CHUN
論文名稱:基於結構光於高精度全域立體數位影像相關法之開發
論文名稱(外文):Development of High-precision Full-field Stereo Digital Image Correlation based on Structured Light
指導教授:張敬源
指導教授(外文):CHANG, CHING-YUAN
口試委員:林柏廷洪維松吳育瑋
口試委員(外文):LIN, PO-TINGHUNG, WEI-SONGWU, YU-WEI
口試日期:2019-07-25
學位類別:碩士
校院名稱:國立臺北科技大學
系所名稱:機械工程系機電整合碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:74
中文關鍵詞:數位影像相關法非接觸量測立體數位影像相關法拉伸試驗壓縮試驗應變全場量測三維變形結構光
外文關鍵詞:Digital Image CorrelationNon-Contact measurementStereo Digital Image CorrelationTensile testCompression teststrainFull-filed measurementThree-dimensional deformationStructured Light
相關次數:
  • 被引用被引用:0
  • 點閱點閱:78
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
立體數位影像相關法(Stereo DIC)連年來廣泛運用於實驗力學中,相較於傳統貼附式感測器,具有非接觸、全場及三維變形量測等優勢。本研究基於實驗室自行開發之Stereo DIC 系統加以改良,結合投影機投映光束,採數位編碼之方式量化影像區域,使便易量測架設、減少運算時間、擴大可量測範圍及增加精度。首先應用於聚二甲基矽氧烷(Polydimethylsiloxane, PDMS)之ASTM-D638規範標準試片,在拉伸下其超彈性特性導致量測影像法向量中亦有大尺度位移變形,即三維運動之變形。透過改良之Stereo DIC分析試片全場變形、雙軸應變及蒲松比並針對局部應變予以探討,並使用雷射位移計單點量測之結果進行驗證。之後將DIC改良系統應用於汽車避震器緩衝塊(Jounce Bumper)反覆壓縮之變形實驗中,以驗證該系統之高辨識能力;並利用區域編碼優勢,展現針對小曲率表面量測之可行性;最後執行全域性量測,多點同步量測下頗析特殊形狀於各局部之應變,並與有限元素法(FEM)相互驗證比對。
With a series of advantages compared to the traditional sensors, Stereo DIC has been widely applied in experimental mechanics recently for its properties of non-contact, full-field and three-dimensional deformation measurement. Base on the Stereo DIC measurement system developed by the laboratory itself, this study combined with the principle of grating-projection encoding to quantify the image district for convenience of measurement, reducing the waste of computational operation, increasing the range of measurement as well as the precision. First of all, operate the measurement experiment extending the specimen made of polydimethylsiloxane (PDMS) based on the standard model of ASTM D638, its property of hyper-elastic would also cause a huge-scale displacement in image normal vector. Through the full-field analysis by Stereo DIC, obtain the data of deformation, biaxial strain and Poisson’s ratio, then deeply discuss for the partial area and prove the result with single-point measurement by laser displacement sensor. At the result, apply the improved DIC system to another experiment that compressing the jounce bumper repeatedly, taking advantage of the district encoding to certify the capability for measurement with large-curvature and rugged surface, being able to analyze the local strain of abnormal specimen and mutually verified against the finite element method (FEM) simultaneously.
摘 要 i
ABSTRACT ii
致謝 iii
目 錄 iv
圖目錄 vi
第一章 緒論 1
1.1 研究動機 1
1.2 文獻回顧 2
1.3 內容簡介 9
第二章 數位影像相關法基本原理與實驗儀器介紹 11
2.1 二維數位影像相關法(DIC) 11
2.1.1 基本原理 11
2.1.2 搜尋演算法及相關係數 11
2.1.3 極值搜尋法 15
2.2 立體數位影像相關法 16
2.3 數位影像相關法之量測運作流程 17
2.3.1 二維DIC程式流程 17
2.3.2 二維DIC更新特徵子集合程式流程 18
2.3.3 立體DIC程式流程 18
2.3.4 全域高精度立體DIC程式流程 18
2.4 實驗儀器介紹 19
2.4.1 萬能拉伸試驗機 20
2.4.2 數位工業相機 20
2.4.3 數位投影機 20
2.4.4 真空泵及真空皿 20
2.4.5 熔融沉積成型列印機 21
第三章 利用投影結構光建立全域立體數位影像相關法 33
3.1 投影結構光編碼影像於特徵辨識 33
3.1.1 結構光投影基本介紹 34
3.1.2 格雷碼訊號編碼 34
3.2 結構光影像及訊噪處理 35
3.2.1 反白影像投影 35
3.2.2 影像混合分割處理 36
3.2.3 濾鏡原理於提升影像品質 38
3.3 利用結構光編碼區域之邊界提升辨識精度 39
3.3.1 特徵影像擬合 40
3.3.2 索引區域座標化 42
3.3.3 索引區域延伸於提高擬合特徵包覆性 44
3.4 全域立體數位影像相關法量測架設與流程 46
第四章 應用更新演算法DIC量測拉脹結構試片 58
4.1 研究動機 58
4.2 試片製作 59
4.3 實驗架設 62
第五章 未來展望 67
第六章 參考文獻 68


[1]Laurentini, “The visual hull concept for silhouette-based image understanding,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 16, no. 2. pp. 150–162, 1994.
[2]P. Psota, P. Mokrý, V. Lédl, M. Stašík, O. Matoušek, and J. Kredba, “Absolute and pixel-wise measurements of vibration amplitudes using time-averaged digital holography,” Opt. Lasers Eng., vol. 121, pp. 236–245, Oct. 2019.
[3]M. O’Toole and J. Mather, “3d shape and indirect appearance by structured light transport,” Proc. IEEE, 2014.
[4]C. Je, K. H. Lee, and S. W. Lee, “Multi-projector color structured-light vision,” Signal Processing: Image Communication, vol. 28, no. 9, pp. 1046–1058, Oct. 2013.
[5]A. Ben-Hamadou, C. Soussen, C. Daul, W. Blondel, and D. Wolf, “Flexible calibration of structured-light systems projecting point patterns,” Comput. Vis. Image Underst., vol. 117, no. 10, pp. 1468–1481, Oct. 2013.
[6]L. Yu and B. Pan, “Single-camera high-speed stereo-digital image correlation for full-field vibration measurement,” Mechanical Systems and Signal Processing, vol. 94. pp. 374–383, 2017.
[7]C. Cabo, C. Ordóñez, M. Muñiz-Calvente, M. Lozano, and G. Ismael, “A hybrid SURF-DIC algorithm to estimate local displacements in structures using low-cost conventional cameras,” Engineering Failure Analysis, vol. 104. pp. 807–815, 2019.
[8]Y. Morimoto, A. Masaya, and M. Ueki, “High-speed 3D shape measurement by one pitch phase analysis method using brightness values in small square area of single-shot image,” Optics and Lasers in Engineering, vol. 113. pp. 38–46, 2019.
[9]Z. Su, L. Lu, S. Dong, F. Yang, and X. He, “Auto-calibration and real-time external parameter correction for stereo digital image correlation,” Opt. Lasers Eng., vol. 121, pp. 46–53, Oct. 2019.
[10]B. Chen and B. Pan, “Through-thickness strain field measurement using the mirror-assisted multi-view digital image correlation,” Mech. Mater., vol. 137, p. 103104, Oct. 2019.
[11]B. Chen and B. Pan, “Mirror-assisted panoramic-digital image correlation for full-surface 360-deg deformation measurement,” Measurement, vol. 132, pp. 350–358, Jan. 2019.
[12]R. Yang, C. Ding, L. Yang, Z. Lei, and C. Zheng, “Study of decoupled charge blasting based on high-speed digital image correlation method,” Tunnelling and Underground Space Technology, vol. 83, pp. 51–59, Jan. 2019.
[13]T. J. Beberniss and D. A. Ehrhardt, “High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations,” Mech. Syst. Signal Process., vol. 86, pp. 35–48, Mar. 2017.
[14]C.-Y. Chang and C.-C. Ma, “Increasing the computational efficient of digital cross correlation by a vectorization method,” Mech. Syst. Signal Process., vol. 92, pp. 293–314, Aug. 2017.
[15]R. Huňady and M. Hagara, “A new procedure of modal parameter estimation for high-speed digital image correlation,” Mech. Syst. Signal Process., vol. 93, pp. 66–79, Sep. 2017.
[16]L. Felipe-Sesé and F. A. Díaz, “Damage methodology approach on a composite panel based on a combination of Fringe Projection and 2D Digital Image Correlation,” Mech. Syst. Signal Process., vol. 101, pp. 467–479, Feb. 2018.
[17]A. J. Molina-Viedma, L. Felipe-Sesé, E. López-Alba, and F. Díaz, “High frequency mode shapes characterisation using Digital Image Correlation and phase-based motion magnification,” Mech. Syst. Signal Process., vol. 102, pp. 245–261, Mar. 2018.
[18]J. N. Grima et al., “Tailoring Graphene to Achieve Negative Poisson’s Ratio Properties,” Advanced Materials, vol. 27, no. 8. pp. 1455–1459, 2015.
[19]S. Babaee, J. Shim, J. C. Weaver, E. R. Chen, N. Patel, and K. Bertoldi, “Metamaterials: 3D Soft Metamaterials with Negative Poisson’s Ratio (Adv. Mater. 36/2013),” Advanced Materials, vol. 25, no. 36. pp. 5116–5116, 2013.
[20]E. Andreassen, B. S. Lazarov, and O. Sigmund, “Design of manufacturable 3D extremal elastic microstructure,” Mechanics of Materials, vol. 69, no. 1. pp. 1–10, 2014.
[21]H. Yang, B. Wang, and L. Ma, “Mechanical properties of 3D double-U auxetic structures,” International Journal of Solids and Structures, vol. 180–181. pp. 13–29, 2019.
[22]S. Jin, Y. P. Korkolis, and Y. Li, “Shear resistance of an auxetic chiral mechanical metamaterial,” International Journal of Solids and Structures, vol. 174–175. pp. 28–37, 2019.
[23]Y. Wang, L. Wang, Z.-D. Ma, and T. Wang, “A negative Poisson’s ratio suspension jounce bumper,” Materials & Design, vol. 103. pp. 90–99, 2016.
[24]Y. Wang, W. Zhao, G. Zhou, Q. Gao, and C. Wang, “Suspension mechanical performance and vehicle ride comfort applying a novel jounce bumper based on negative Poisson’s ratio structure,” Advances in Engineering Software, vol. 122. pp. 1–12, 2018.
[25]Y. Hu, W. Guo, W. Zhu, and Y. Xu, “Local damage detection of membranes based on Bayesian operational modal analysis and three-dimensional digital image correlation,” Mech. Syst. Signal Process., vol. 131, pp. 633–648, Sep. 2019.
[26]T. Durand-Texte, E. Simonetto, S. Durand, M. Melon, and M.-H. Moulet, “Vibration measurement using a pseudo-stereo system, target tracking and vision methods,” Mech. Syst. Signal Process., vol. 118, pp. 30–40, Mar. 2019.
[27]R. Wu, D. Zhang, Q. Yu, Y. Jiang, and D. Arola, “Health monitoring of wind turbine blades in operation using three-dimensional digital image correlation,” Mech. Syst. Signal Process., vol. 130, pp. 470–483, Sep. 2019.
[28]J. Zhao, “Deformation measurement using digital image correlation by adaptively adjusting the parameters,” Optical Engineering, vol. 55, no. 12. p. 124104, 2016.
[29]M. A. Caminero, M. Lopez-Pedrosa, C. Pinna, and C. Soutis, “Damage Assessment of Composite Structures Using Digital Image Correlation,” Applied Composite Materials, vol. 21, no. 1. pp. 91–106, 2014.
[30]K. Genovese, L. Cortese, M. Rossi, and D. Amodio, “A 360-deg Digital Image Correlation system for materials testing,” Optics and Lasers in Engineering, vol. 82. pp. 127–134, 2016.
[31]J.-C. Passieux, J. -C. Passieux, F. Bugarin, C. David, J. -N. Périé, and L. Robert, “Multiscale Displacement Field Measurement Using Digital Image Correlation: Application to the Identification of Elastic Properties,” Experimental Mechanics, vol. 55, no. 1. pp. 121–137, 2015.
[32]B. Pan and L. Tian, “Superfast robust digital image correlation analysis with parallel computing,” Optical Engineering, vol. 54, no. 3. p. 034106, 2015.
[33]X. Xu et al., “High-Accuracy, High-Efficiency Compensation Method in Two-Dimensional Digital Image Correlation,” Experimental Mechanics, vol. 57, no. 6. pp. 831–846, 2017.
[34]X.-Y. Liu et al., “Performance of iterative gradient-based algorithms with different intensity change models in digital image correlation,” Optics & Laser Technology, vol. 44, no. 4. pp. 1060–1067, 2012.
[35]K. Briechle and U. D. Hanebeck, “Template matching using fast normalized cross correlation,” Optical Pattern Recognition XII. 2001.
[36]H. A. Bruck, S. R. McNeill, M. A. Sutton, and W. H. Peters, “Digital image correlation using Newton-Raphson method of partial differential correction,” Experimental Mechanics, vol. 29, no. 3. pp. 261–267, 1989.
[37]J. Chen, X. Zhang, N. Zhan, and X. Hu, “Deformation measurement across crack using two-step extended digital image correlation method,” Optics and Lasers in Engineering, vol. 48, no. 11. pp. 1126–1131, 2010.
[38]B. Pan, “Full-field strain measurement using a two-dimensional Savitzky-Golay digital differentiator in digital image correlation,” Optical Engineering, vol. 46, no. 3. p. 033601, 2007.
[39]B. Pan, A. Asundi, H. Xie, and J. Gao, “Digital image correlation using iterative least squares and pointwise least squares for displacement field and strain field measurements,” Optics and Lasers in Engineering, vol. 47, no. 7–8. pp. 865–874, 2009.
[40]B. Pan, “Reliability-guided digital image correlation for image deformation measurement,” Appl. Opt., vol. 48, no. 8, pp. 1535–1542, Mar. 2009.
[41]B. Pan, Z. Wang, and Z. Lu, “Genuine full-field deformation measurement of an object with complex shape using reliability-guided digital image correlation,” Optics Express, vol. 18, no. 2. p. 1011, 2010.
[42]K. Zhou and Z. Y. Wu, “Strain gauge placement optimization for structural performance assessment,” Engineering Structures, vol. 141. pp. 184–197, 2017.
[43]F. Zhu, P. Bai, J. Zhang, D. Lei, and X. He, “Measurement of true stress–strain curves and evolution of plastic zone of low carbon steel under uniaxial tension using digital image correlation,” Optics and Lasers in Engineering, vol. 65. pp. 81–88, 2015.
[44]G. D. Evangelidis and E. Z. Psarakis, “Parametric Image Alignment Using Enhanced Correlation Coefficient Maximization,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 10. pp. 1858–1865, 2008.
[45]M. R. Ayatollahi and M. Moazzami, “Digital image correlation method for calculating coefficients of Williams expansion in compact tension specimen,” Optics and Lasers in Engineering, vol. 90. pp. 26–33, 2017.
[46]X. Shao, X. Dai, Z. Chen, Y. Dai, S. Dong, and X. He, “Calibration of stereo-digital image correlation for deformation measurement of large engineering components,” Measurement Science and Technology, vol. 27, no. 12. p. 125010, 2016.
[47]Y. Gao, T. Cheng, Y. Su, X. Xu, Y. Zhang, and Q. Zhang, “High-efficiency and high-accuracy digital image correlation for three-dimensional measurement,” Optics and Lasers in Engineering, vol. 65. pp. 73–80, 2015.
[48]J. Li, X. Xie, G. Yang, B. Zhang, T. Siebert, and L. Yang, “Whole-field thickness strain measurement using multiple camera digital image correlation system,” Optics and Lasers in Engineering, vol. 90. pp. 19–25, 2017.
[49]J. Chen, N. Zhan, X. Zhang, and J. Wang, “Improved extended digital image correlation for crack tip deformation measurement,” Optics and Lasers in Engineering, vol. 65. pp. 103–109, 2015.
[50]S. A. Stanier, J. Blaber, W. A. Take, and D. J. White, “Improved image-based deformation measurement for geotechnical applications,” Canadian Geotechnical Journal, vol. 53, no. 5. pp. 727–739, 2016.
[51]R. Jensen, A. Dahl, G. Vogiatzis, E. Tola, and H. Aanæs, “Large scale multi-view stereopsis evaluation,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2014, pp. 406–413.
[52]L. Pérez, Í. Rodríguez, N. Rodríguez, R. Usamentiaga, and D. F. García, “Robot Guidance Using Machine Vision Techniques in Industrial Environments: A Comparative Review,” Sensors , vol. 16, no. 3, Mar. 2016.
[53]T. T. Nguyen, D. C. Slaughter, N. Max, J. N. Maloof, and N. Sinha, “Structured Light-Based 3D Reconstruction System for Plants,” Sensors , vol. 15, no. 8, pp. 18587–18612, Jul. 2015.
[54]M. Massot-Campos and G. Oliver-Codina, “Optical Sensors and Methods for Underwater 3D Reconstruction,” Sensors , vol. 15, no. 12, pp. 31525–31557, Dec. 2015.
[55]W. Jang, C. Je, Y. Seo, and S. W. Lee, “Structured-light stereo: Comparative analysis and integration of structured-light and active stereo for measuring dynamic shape,” Opt. Lasers Eng., vol. 51, no. 11, pp. 1255–1264, Nov. 2013.
[56]S. Krig, Computer Vision Metrics: Survey, Taxonomy, and Analysis. Apress, 2014.
[57]S. Ryan Fanello et al., “Hyperdepth: Learning depth from structured light without matching,” in Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 5441–5450.
[58]Y.-H. Chang, W. Wang, J.-Y. Chang, and J. E. Mottershead, “Compressed sensing for OMA using full-field vibration images,” Mech. Syst. Signal Process., vol. 129, pp. 394–406, Aug. 2019.
[59]S. Barone, P. Neri, A. Paoli, and A. V. Razionale, “Low-frame-rate single camera system for 3D full-field high-frequency vibration measurements,” Mech. Syst. Signal Process., vol. 123, pp. 143–152, May 2019.

電子全文 電子全文(網際網路公開日期:20220831)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top