|
[1] 陳嘉明,生物質木材膠合劑,台北,國立編譯館,1999。 [2] A. Mohanty, M. Misra, and G. Hinrichsen, Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromolecular Materials and Engineering, Vol. 276-277, pp. 1-24, 2000. [3] C. Jose Chirayil, L. Mathew, and S. Thomas, Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Reviews on advanced materials science, Vol. 37, pp. 20-28 2014. [4] T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules, Vol. 8, pp. 2485-91, 2007. [5] G. Rodionova, Ø. Eriksen, and Ø. Gregersen, TEMPO-oxidized cellulose nanofiber films: Effect of surface morphology on water resistance. Cellulose, Vol. 19, 2012. [6] Y. Wang, G. A Ameer, B. Sheppard, and R. Langer, A tough biodegradable elastomer. Nature Biotechnology, Vol. 20, pp. 602-620, 2002. [7] X. li, A. Hong, N. Naskar, and H.-j. Chung, Criteria for Quick and Consistent Synthesis of Poly(Glycerol Sebacate) for Tailored Mechanical Properties. Biomacromolecules, Vol. 16, 2015. [8] J. M Kemppainen and S. Hollister, Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. Journal of Biomedical Materials Research Part A, Vol. 94, pp. 9-18, 2010. [9] Q. Chen et al., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, Vol. 29, 2008. [10] Q. Liu, M. Tian, R. Shi, L. Zhang, D. Chen, and W. Tian, Structure and properties of thermoplastic poly(glycerol sebacate) elastomers originating from prepolymers with different molecular weights. Journal of Applied Polymer Science, Vol. 104, pp. 1131-1137, 2007. [11] R. Rai, M. Tallawi, A. Grigore, and A. R. Boccaccini, Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, Vol. 37, no. 8, pp. 1051-1078, 2012. [12] Q. Liu et al., Preparation and characterization of a thermoplastic poly(glycerol sebacate) elastomer by two-step method. Journal of Applied Polymer Science, Vol. 103, pp. 1412-1419, 2007. [13] A. Kuptsov, Applications of Fourier Transform Raman Spectroscopy in Forensic Science. Journal of Forensic Sciences, Vol. 39, 1994. [14] S. Salehi, M. Fathi, S. Javanmard, F. Barneh, and M. Moshayedi, Fabrication and characterization of biodegradable polymeric films as a corneal stroma substitute. Advanced biomedical research, Vol. 4, p. 9, 2015. [15] Z.-J. Sun et al., Glycolic acid modulates the mechanical property and degradation of poly(glycerol, sebacate, glycolic acid). Journal of Biomedical Materials Research Part A, Vol. 92, pp. 332-9, 2010. [16] X. J. Loh, A. Karim, and C. Owh, Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications. Journal of Materials Chemistry B, Vol. 3, 2015. [17] Q. Chen, S.-L. Liang, J. Wang, and G. P Simon, Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications. Journal of the mechanical behavior of biomedical materials, Vol. 4, pp. 1805-18, 2011. [18] T. Wu, M. Frydrych, K. O'Kelly, and B. Chen, Poly(glycerol sebacate urethane)-Cellulose Nanocomposites with Water-Active Shape-Memory Effects. Biomacromolecules, Vol. 15, 2014. [19] L. Zhou, H. He, C. Jiang, and S. He, Preparation and characterization of poly(glycerol sebacate)/cellulose nanocrystals elastomeric composites. Journal of Applied Polymer Science, Vol. 132, 2015. [20] A. Gaharwar et al., Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomaterials Science, Vol. 3, 2014. [21] X. Zhao et al., A highly bioactive and biodegradable poly(glycerol sebacate)-silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. Journal of Materials Chemistry B, Vol. 3, pp. 3222-3233, 2015. [22] Z.-J. Sun et al., The influence of lactic on the properties of Poly (glycerol-sebacate-lactic acid). Materials Science and Engineering: C, vol. 29, no. 1, pp. 178-182, 2009. [23] Q. Chen, S. Liang, and G. A. Thouas, Synthesis and characterisation of poly(glycerol sebacate)-co-lactic acid as surgical sealants. Soft Matter, Vol. 7, p. 6484, 2011. [24] S. Zhi-Jie, S. Bo, T. Rong-Bin, X. Xin, L. Xi-Li, and D. De-Li, A poly(glycerol-sebacate-curcumin) polymer with potential use for brain gliomas. Journal of Biomedical Materials Research Part A, Vol. 101(1), pp. 253-260, 2013. [25] H. M. Aydin, K. Salimi, Z. Rzayev, and E. Pişkin, Microwave-assisted Rapid Synthesis of Poly(glycerol-sebacate) Elastomers. Biomaterials Science, Vol. 1, pp. 503-509, 2013. [26] M. Kharaziha et al., PGS:Gelatin Nanofibrous Scaffolds with Tunable Mechanical and Structural Properties for Engineering Cardiac Tissues. Biomaterials, Vol. 34, 2013. [27] R. Ravichandran, J. Venugopal, S. Sundarrajan, S. Mukherjee, R. Sridhar, and S. Ramakrishna, Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology, Vol. 23, p. 385102, 2012. [28] R. Ravichandran, J. Venugopal, S. Sundarrajan, S. Mukherjee, and S. Ramakrishna, Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World Journal of Cardiology, Vol. 5, pp. 28-41, 2013. [29] 蘭道科技有限公司,靜電紡絲技術,民108年01月01日, 取自: http://www.weistron.com.cn/newsitem/277119212. [30] C. L E Nijst et al., Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol- co -sebacate). Biomacromolecules, Vol. 8, pp. 3067-73, 2007. [31] D. Lin, K. Yang, W. Tang, Y. Liu, Y. Yuan, and C. Liu, A Poly (Glycerol Sebacate)-coated Mesoporous Bioactive Glass Scaffold with Adjustable Mechanical Strength, Degradation Rate, Controlled-release and Cell Behavior for Bone Tissue Engineering. Colloids and surfaces B: Biointerfaces, Vol. 131, 2015. [32] A. Nadim, S. Nouri Khorasani, M. Kharaziha, and M. Davoodi, Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Materials Science and Engineering C, Vol. 78, pp. 47-58, 2017. [33] C. Sundback et al., Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, Vol. 26, pp. 5454-64, 2005. [34] C. D. Pritchard, K. M. Arnér, R. S. Langer & F. K. Ghosh, Retinal transplantation using surface modified poly (glycerol-co-sebacic acid) membranes. Biomaterials (31), pp. 7978-7984, 2010. [35] Z.-J. Sun et al., The application of poly (glycerol–sebacate) as biodegradable drug carrier. Biomaterials, Vol. 30, pp. 5209-14, 2009. [36] 瞿麗曼,生物可降解聚合物成為國內外研究應用熱點(一),行業創新信息情報服務平台,民108年01月01日,取自http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/hykjqb/wenzhang/list_n.asp?id=1899&sid=1. [37] Y. Wang, Y. Mi Kim, and R. Langer, In vivo degradation characteristics of poly(glycerol sebacate). Journal of Biomedical Materials Research Part A, Vol. 66, pp. 192-7, 2003. [38] 運用國際標準 ISO-10993:醫療器材生物性評估第一部分:評估與測試、美國人類健康服務部、食品藥物管理局、醫療器材與輻射安全中心、器材評估辦公室,2013。 [39] Y. li, W. D Cook, C. Moorhoff, W. Huang, and Q. Chen, Synthesis, characterization and properties of biocompatible poly(glycerol sebacate) pre-polymer and gel. Polymer International, Vol. 62, pp. 534-547, 2013. [40] X. Zhang, C. Jia, X. Qiao, T. Liu, and K. Sun, Porous poly(glycerol sebacate) (PGS) elastomer scaffolds for skin tissue engineering. Polymer Testing, vol. 54, pp. 118-125, 2016. [41] P. Bragd, H. van Bekkum, and A. Besemer, TEMPO-Mediated Oxidation of Polysaccharides: Survey of Methods and Applications: Catalytic Conversion of Renewables. Guest Editors: Herman van Bekkum and Pierre Gallezot, Vol. 27, 2004. [42] J.F.W. Keana, Chem. Rev, 1978. [43] E. G. Rozantsev and H. Ulrich, Free Nitroxyl Radicals. 1970. [44] H.G. Aurich, in Nitrones, Nitronates and Nitroxides. p. 313, 1989. [45] D.F. Bowman, T. Gillan and K.U. Ingold, J. Am. Chem. Soc. 93(1971)6665. [46] R. A. Jewell, J. L. Koman, and A. S. Weerawarn, Method for preparation of stabilized carboxylated cellulose. 專利編號EP1264846 A1, 2002. [47] H. Fukuzumi, T. Saito, and A. Isogai, Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydrate Polymers, Vol. 93, pp. 172-7, 2013. [48] A. Isogai and Y. Kato, Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation. Cellulose, Vol. 5, pp. 153-164, 1998. [49] A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale, Vol. 3, pp. 71-85, 2010. [50] C.-F. Huang, J.-K. Chen, T.-Y. Tsai, Y.-A. Hsieh, and K.-Y. Lin, Dual-functionalized Cellulose Nanofibrils Prepared through TEMPO-mediated Oxidation and Surface-initiated ATRP. Polymer, Vol. 72, 2015. [51] D. Da Silva Perez, S. Montanari, and M. R Vignon, TEMPO-mediated oxidation of cellulose III. Biomacromolecules,Vol. 4, pp. 1417-25, 2003. [52] C. Tahiri and M. R. Vignon, TEMPO-oxidation of cellulose: Synthesis and characterisation of polyglucuronans. Cellulose,Vol. 7, pp. 177-188, 2000. [53] T. Saito and A. Isogai, TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions. Biomacromolecules, Vol. 5, pp. 1983-9, 2004. [54] S. Gnaniah, Differential Scanning Calorimetry. 2016, http://www.npl.co.uk/science-technology/thermal-performance/areas/thermal-analysis/differential-scanning-calorimetry. [55] M. Abdelwahab, A. Flynn, B.-S. Chiou, S. Imam, W. Orts, and E. Chiellini, Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polymer Degradation and Stability, Vol. 97, pp. 1822-1828, 2012. [56] ASTM E8薄板拉伸試片,民108年01月01號,取自http://www.doczj.com/doc/e12de319998fcc22bdd10d07.html. [57] 元智大學化材系拉力試驗報告.
|