跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/01/22 02:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭超元
研究生(外文):Chao-Yuan Zheng
論文名稱:纖維素改質聚(癸二酸甘油酯)彈性體之製備與性質研究
論文名稱(外文):Preparation and Characterization of Cellulose Modified Poly-(glycerol sebacate) Bioelastomer
指導教授:洪信國
指導教授(外文):Shinn-Gwo Hong
口試委員:黃振球葉嗣韜
口試委員(外文):Zhen-Qiu HuangSsu-Tao Yeh
口試日期:2019-07-09
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:108
中文關鍵詞:聚(癸二酸甘油酯)纖維素接枝共聚合
外文關鍵詞:Poly (glycerol sebacate) (PGS)CelluloseGraftingCopolymerization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:180
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本研究利用不同種類及重量之改質纖維素與生物可降解材料聚(癸二酸甘油酯) poly(glycerol sebacate) (PGS)進行反應,製備為PGS-co-纖維素之共聚彈性體,製程分為熱及光共聚(copolymerization)反應,並討論共聚物的性質與其相關應用。由傅立葉轉換紅外線光譜儀(FT-IR)可得知含雙鍵接枝單體確實接枝於Prepolymer使光共聚反應之彈性體順利成型。另利用熱重分析儀(TGA)及示差掃描熱分析儀(DSC)測試共聚彈性體之熱性質,得知彈性體摻入不同種類及比例之改質纖維素共聚反應後,熱及光共聚彈性體之熱裂解溫度、玻璃轉換溫度、熱熔融溫度、結晶溫度,皆有明顯差異。再由萬能材料拉力機測試共聚彈性體之機械性質,摻入不同種類及重量之改質纖維素,共聚彈性體的機械強度、伸長率、剛性,皆有所增減,加入改質纖維素可調控PGS應用所需之物性。
  The copolymerization of modified cellulose with poly (glycerol sebacate) (PGS) was investigated in this study. Both the thermal and photo copolymerization methods were used to cure PGS-co-cellulose. The results of Fourier transform infrared spectroscopy (FT-IR) indicated that the modified PGS-co-cellulose could be photo cured when an unsaturated monomer was successfully grafted onto PGS-co-cellulose prepolymer. Thermogravimetric analysis (TGA) and differential scanning calorimeter (DSC) were used to analyze the thermal properties of copolymer elastomers. It was obtained that the thermal degradation temperature, glass transition temperature, melting temperature, and crystallization temperature of the PGS-co-cellulose elastomers were significantly affected by the type and amount of the cellulose used. As a result, the corresponding tensile strength, elongation, and rigidity of the prepared elastomers were also changed. It is demonstrated that the physical properties of the PGS elastomer can be tuned by copolymerizing with the modified cellulose.
摘要 II
Abstract III
致謝 IV
目錄 V
圖目錄 IX
表目錄 XI
第1章 、緒論 12
1.1 前言 12
1.2 研究動機與方向 14
第2章 、文獻回顧 15
2.1 纖維素(Cellulose) 15
2.1.1 纖維素(Cellulose)之簡介 15
2.1.2 纖維素(Cellulose)之組成 16
2.1.3 纖維素(Cellulose)之性質 17
2.1.4 纖維素(Cellulose)之機械特性 17
2.1.5 纖維素(Cellulose)薄膜的應用 18
2.1.6 醋酸纖維素(Cellulose-acetate)之簡介 19
2.2 Poly(glycerol sebacate) (PGS)簡介 20
2.3 Poly(glycerol sebacate) (PGS)複合材料製作及調整方法 22
2.3.1 摻混(Blending) 22
2.3.2 共聚(Copolymerization) 22
2.3.3 微波輔助(Microwave-assisted) 24
2.3.4 靜電紡絲(Electro-spinning) 24
2.3.5 PGSA光引發聚合(Photopolymerization) 26
2.4 Poly(glycerol sebacate) (PGS)複合材料應用 27
2.4.1 組織再生支架 27
2.4.2 軟組織修補材料 28
2.4.3 手術密封膠 29
2.4.4 藥物載體 29
2.5 生物可降解聚合物 30
2.6 Poly(glycerol sebacate)(PGS)降解特性 31
2.6.1 體內降解 (In Vivo) 31
2.6.2 體外降解 (In Vitro) 32
2.7 生物相容性 33
2.7.1 材料結構與生物相容性間影響 33
2.7.2 間接細胞相容性 34
2.7.3 直接細胞相容性 34
2.8 TEMPO間接氧化法 (TEMPO-Mediated Oxidization) 36
2.8.1 TEMPO之簡介 36
2.8.2 TEMPO間接氧化原理 37
2.8.3 TEMPO氧化纖維素(TEMPO oxidized cellulose ) 38
第3章 、材料與實驗方法 40
3.1 實驗藥品 40
3.2 實驗設備 42
3.3 實驗步驟 44
3.3.1 纖維素(Cellulose)性質處理製備 44
3.3.2 Poly(glycerol sebacate) (PGS)之製備 47
3.3.3 PGS-co-(α-cellulose)彈性體熱固化製程與分析 51
3.3.4 PGS-co-(cellulose-acetate)彈性體熱固化製程與分析 54
3.3.5 PGS-co-(α-cellulose)彈性體光固化製程與分析 57
3.4 實驗儀器分析 60
3.4.1 凝膠滲透層析儀 (Gel Permeation Chromatography, GPC) 60
3.4.2 傅立葉轉換紅外光譜儀 (Fourier Transform Infrared Spectroscopy,FT-IR) 60
3.4.3 熱重分析(Thermogravimetric Analysis, TGA) 62
3.4.4 示差掃描熱分析儀(Differential Scanning Calorimetry, DSC) 62
3.4.5 機械性質測試(Universal Material Testing Machine) 66
第4章 、結果與討論 68
4.1 纖維素(Cellulose)材料鑑定分析 68
4.1.1 纖維素(Cellulose) FT-IR分析 68
4.1.2 纖維素(Cellulose) TGA分析 70
4.1.3 纖維素(Cellulose) DSC分析 73
4.2 Poly(glycerol sebacate) (PGS)彈性體鑑定分析 74
4.2.1 Poly(glycerol sebacate) (PGS)製程分析 74
4.2.2 Poly(glycerol sebacate) (PGS) FT-IR分析 74
4.2.3 Poly(glycerol sebacate) (PGS) GPC分析 76
4.2.4 Poly(glycerol sebacate) (PGS) TGA分析 77
4.2.5 Poly(glycerol sebacate) (PGS) 機械性質分析 78
4.3 PGS-co-Cellulose熱固化彈性體鑑定分析 79
4.3.1 PGS-co-Cellulose熱固化彈性體 ATR FT-IR分析 79
4.3.2 PGS-co-Cellulose熱固化彈性體 TGA分析 81
4.3.3 PGS-co-Cellulose熱固化彈性體 DSC分析 83
4.3.4 PGS-co-Cellulose熱固化彈性體 機械性質分析 86
4.4 PGS-co-(α-Cellulose) 光固化彈性體鑑定分析 90
4.4.1 Prepolymer-g-GMA 光固化彈性體 FT-IR分析 90
4.4.2 PGS-co-(α-Cellulose) 光固化彈性體 TGA分析 91
4.4.3 PGS-co-(α-Cellulose) 光固化彈性體 DSC分析 96
4.4.4 PGS-co-(α-Cellulose) 光固化彈性體 機械性質分析 98
第5章 、結論 101
5.1 結論 101
第6章 、參考文獻 103
[1] 陳嘉明,生物質木材膠合劑,台北,國立編譯館,1999。
[2] A. Mohanty, M. Misra, and G. Hinrichsen, Biofibres, Biodegradable Polymers and Biocomposites: An Overview. Macromolecular Materials and Engineering, Vol. 276-277, pp. 1-24, 2000.
[3] C. Jose Chirayil, L. Mathew, and S. Thomas, Review of recent research in nano cellulose preparation from different lignocellulosic fibers. Reviews on advanced materials science, Vol. 37, pp. 20-28 2014.
[4] T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Cellulose Nanofibers Prepared by TEMPO-Mediated Oxidation of Native Cellulose. Biomacromolecules, Vol. 8, pp. 2485-91, 2007.
[5] G. Rodionova, Ø. Eriksen, and Ø. Gregersen, TEMPO-oxidized cellulose nanofiber films: Effect of surface morphology on water resistance. Cellulose, Vol. 19, 2012.
[6] Y. Wang, G. A Ameer, B. Sheppard, and R. Langer, A tough biodegradable elastomer. Nature Biotechnology, Vol. 20, pp. 602-620, 2002.
[7] X. li, A. Hong, N. Naskar, and H.-j. Chung, Criteria for Quick and Consistent Synthesis of Poly(Glycerol Sebacate) for Tailored Mechanical Properties. Biomacromolecules, Vol. 16, 2015.
[8] J. M Kemppainen and S. Hollister, Tailoring the mechanical properties of 3D-designed poly(glycerol sebacate) scaffolds for cartilage applications. Journal of Biomedical Materials Research Part A, Vol. 94, pp. 9-18, 2010.
[9] Q. Chen et al., Characterisation of a soft elastomer poly(glycerol sebacate) designed to match the mechanical properties of myocardial tissue. Biomaterials, Vol. 29, 2008.
[10] Q. Liu, M. Tian, R. Shi, L. Zhang, D. Chen, and W. Tian, Structure and properties of thermoplastic poly(glycerol sebacate) elastomers originating from prepolymers with different molecular weights. Journal of Applied Polymer Science, Vol. 104, pp. 1131-1137, 2007.
[11] R. Rai, M. Tallawi, A. Grigore, and A. R. Boccaccini, Synthesis, properties and biomedical applications of poly(glycerol sebacate) (PGS): A review. Progress in Polymer Science, Vol. 37, no. 8, pp. 1051-1078, 2012.
[12] Q. Liu et al., Preparation and characterization of a thermoplastic poly(glycerol sebacate) elastomer by two-step method. Journal of Applied Polymer Science, Vol. 103, pp. 1412-1419, 2007.
[13] A. Kuptsov, Applications of Fourier Transform Raman Spectroscopy in Forensic Science. Journal of Forensic Sciences, Vol. 39, 1994.
[14] S. Salehi, M. Fathi, S. Javanmard, F. Barneh, and M. Moshayedi, Fabrication and characterization of biodegradable polymeric films as a corneal stroma substitute. Advanced biomedical research, Vol. 4, p. 9, 2015.
[15] Z.-J. Sun et al., Glycolic acid modulates the mechanical property and degradation of poly(glycerol, sebacate, glycolic acid). Journal of Biomedical Materials Research Part A, Vol. 92, pp. 332-9, 2010.
[16] X. J. Loh, A. Karim, and C. Owh, Poly(glycerol sebacate) biomaterial: synthesis and biomedical applications. Journal of Materials Chemistry B, Vol. 3, 2015.
[17] Q. Chen, S.-L. Liang, J. Wang, and G. P Simon, Manipulation of mechanical compliance of elastomeric PGS by incorporation of halloysite nanotubes for soft tissue engineering applications. Journal of the mechanical behavior of biomedical materials, Vol. 4, pp. 1805-18, 2011.
[18] T. Wu, M. Frydrych, K. O'Kelly, and B. Chen, Poly(glycerol sebacate urethane)-Cellulose Nanocomposites with Water-Active Shape-Memory Effects. Biomacromolecules, Vol. 15, 2014.
[19] L. Zhou, H. He, C. Jiang, and S. He, Preparation and characterization of poly(glycerol sebacate)/cellulose nanocrystals elastomeric composites. Journal of Applied Polymer Science, Vol. 132, 2015.
[20] A. Gaharwar et al., Elastomeric nanocomposite scaffolds made from poly(glycerol sebacate) chemically crosslinked with carbon nanotubes. Biomaterials Science, Vol. 3, 2014.
[21] X. Zhao et al., A highly bioactive and biodegradable poly(glycerol sebacate)-silica glass hybrid elastomer with tailored mechanical properties for bone tissue regeneration. Journal of Materials Chemistry B, Vol. 3, pp. 3222-3233, 2015.
[22] Z.-J. Sun et al., The influence of lactic on the properties of Poly (glycerol-sebacate-lactic acid). Materials Science and Engineering: C, vol. 29, no. 1, pp. 178-182, 2009.
[23] Q. Chen, S. Liang, and G. A. Thouas, Synthesis and characterisation of poly(glycerol sebacate)-co-lactic acid as surgical sealants. Soft Matter, Vol. 7, p. 6484, 2011.
[24] S. Zhi-Jie, S. Bo, T. Rong-Bin, X. Xin, L. Xi-Li, and D. De-Li, A poly(glycerol-sebacate-curcumin) polymer with potential use for brain gliomas. Journal of Biomedical Materials Research Part A, Vol. 101(1), pp. 253-260, 2013.
[25] H. M. Aydin, K. Salimi, Z. Rzayev, and E. Pişkin, Microwave-assisted Rapid Synthesis of Poly(glycerol-sebacate) Elastomers. Biomaterials Science, Vol. 1, pp. 503-509, 2013.
[26] M. Kharaziha et al., PGS:Gelatin Nanofibrous Scaffolds with Tunable Mechanical and Structural Properties for Engineering Cardiac Tissues. Biomaterials, Vol. 34, 2013.
[27] R. Ravichandran, J. Venugopal, S. Sundarrajan, S. Mukherjee, R. Sridhar, and S. Ramakrishna, Minimally invasive injectable short nanofibers of poly(glycerol sebacate) for cardiac tissue engineering. Nanotechnology, Vol. 23, p. 385102, 2012.
[28] R. Ravichandran, J. Venugopal, S. Sundarrajan, S. Mukherjee, and S. Ramakrishna, Cardiogenic differentiation of mesenchymal stem cells on elastomeric poly (glycerol sebacate)/collagen core/shell fibers. World Journal of Cardiology, Vol. 5, pp. 28-41, 2013.
[29] 蘭道科技有限公司,靜電紡絲技術,民108年01月01日,
取自: http://www.weistron.com.cn/newsitem/277119212.
[30] C. L E Nijst et al., Synthesis and Characterization of Photocurable Elastomers from Poly(glycerol- co -sebacate). Biomacromolecules, Vol. 8, pp. 3067-73, 2007.
[31] D. Lin, K. Yang, W. Tang, Y. Liu, Y. Yuan, and C. Liu, A Poly (Glycerol Sebacate)-coated Mesoporous Bioactive Glass Scaffold with Adjustable Mechanical Strength, Degradation Rate, Controlled-release and Cell Behavior for Bone Tissue Engineering. Colloids and surfaces B: Biointerfaces, Vol. 131, 2015.
[32] A. Nadim, S. Nouri Khorasani, M. Kharaziha, and M. Davoodi, Design and characterization of dexamethasone-loaded poly (glycerol sebacate)-poly caprolactone/gelatin scaffold by coaxial electro spinning for soft tissue engineering. Materials Science and Engineering C, Vol. 78, pp. 47-58, 2017.
[33] C. Sundback et al., Biocompatibility analysis of poly(glycerol sebacate) as a nerve guide material. Biomaterials, Vol. 26, pp. 5454-64, 2005.
[34] C. D. Pritchard, K. M. Arnér, R. S. Langer & F. K. Ghosh, Retinal transplantation using surface modified poly (glycerol-co-sebacic acid) membranes. Biomaterials (31), pp. 7978-7984, 2010.
[35] Z.-J. Sun et al., The application of poly (glycerol–sebacate) as biodegradable drug carrier. Biomaterials, Vol. 30, pp. 5209-14, 2009.
[36] 瞿麗曼,生物可降解聚合物成為國內外研究應用熱點(一),行業創新信息情報服務平台,民108年01月01日,取自http://www.libnet.sh.cn:82/gate/big5/www.istis.sh.cn/hykjqb/wenzhang/list_n.asp?id=1899&sid=1.
[37] Y. Wang, Y. Mi Kim, and R. Langer, In vivo degradation characteristics of poly(glycerol sebacate). Journal of Biomedical Materials Research Part A, Vol. 66, pp. 192-7, 2003.
[38] 運用國際標準 ISO-10993:醫療器材生物性評估第一部分:評估與測試、美國人類健康服務部、食品藥物管理局、醫療器材與輻射安全中心、器材評估辦公室,2013。
[39] Y. li, W. D Cook, C. Moorhoff, W. Huang, and Q. Chen, Synthesis, characterization and properties of biocompatible poly(glycerol sebacate) pre-polymer and gel. Polymer International, Vol. 62, pp. 534-547, 2013.
[40] X. Zhang, C. Jia, X. Qiao, T. Liu, and K. Sun, Porous poly(glycerol sebacate) (PGS) elastomer scaffolds for skin tissue engineering. Polymer Testing, vol. 54, pp. 118-125, 2016.
[41] P. Bragd, H. van Bekkum, and A. Besemer, TEMPO-Mediated Oxidation of Polysaccharides: Survey of Methods and Applications: Catalytic Conversion of Renewables. Guest Editors: Herman van Bekkum and Pierre Gallezot, Vol. 27, 2004.
[42] J.F.W. Keana, Chem. Rev, 1978.
[43] E. G. Rozantsev and H. Ulrich, Free Nitroxyl Radicals. 1970.
[44] H.G. Aurich, in Nitrones, Nitronates and Nitroxides. p. 313, 1989.
[45] D.F. Bowman, T. Gillan and K.U. Ingold, J. Am. Chem. Soc. 93(1971)6665.
[46] R. A. Jewell, J. L. Koman, and A. S. Weerawarn, Method for preparation of stabilized carboxylated cellulose. 專利編號EP1264846 A1, 2002.
[47] H. Fukuzumi, T. Saito, and A. Isogai, Influence of TEMPO-oxidized cellulose nanofibril length on film properties. Carbohydrate Polymers, Vol. 93, pp. 172-7, 2013.
[48] A. Isogai and Y. Kato, Preparation of Polyuronic Acid from Cellulose by TEMPO-mediated Oxidation. Cellulose, Vol. 5, pp. 153-164, 1998.
[49] A. Isogai, T. Saito, and H. Fukuzumi, TEMPO-oxidized cellulose nanofibers. Nanoscale, Vol. 3, pp. 71-85, 2010.
[50] C.-F. Huang, J.-K. Chen, T.-Y. Tsai, Y.-A. Hsieh, and K.-Y. Lin, Dual-functionalized Cellulose Nanofibrils Prepared through TEMPO-mediated Oxidation and Surface-initiated ATRP. Polymer, Vol. 72, 2015.
[51] D. Da Silva Perez, S. Montanari, and M. R Vignon, TEMPO-mediated oxidation of cellulose III. Biomacromolecules,Vol. 4, pp. 1417-25, 2003.
[52] C. Tahiri and M. R. Vignon, TEMPO-oxidation of cellulose: Synthesis and characterisation of polyglucuronans. Cellulose,Vol. 7, pp. 177-188, 2000.
[53] T. Saito and A. Isogai, TEMPO-Mediated Oxidation of Native Cellulose. The Effect of Oxidation Conditions on Chemical and Crystal Structures of the Water-Insoluble Fractions. Biomacromolecules, Vol. 5, pp. 1983-9, 2004.
[54] S. Gnaniah, Differential Scanning Calorimetry. 2016,
http://www.npl.co.uk/science-technology/thermal-performance/areas/thermal-analysis/differential-scanning-calorimetry.
[55] M. Abdelwahab, A. Flynn, B.-S. Chiou, S. Imam, W. Orts, and E. Chiellini, Thermal, mechanical and morphological characterization of plasticized PLA-PHB blends. Polymer Degradation and Stability, Vol. 97, pp. 1822-1828, 2012.
[56] ASTM E8薄板拉伸試片,民108年01月01號,取自http://www.doczj.com/doc/e12de319998fcc22bdd10d07.html.
[57] 元智大學化材系拉力試驗報告.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top