跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張俊賢
研究生(外文):CHANG, CHUN-HSIEN
論文名稱:第五代行動通訊小型基地台高增益波束切換 之共形相控陣列天線暨其圓錐效應校正技術的研究與實現
論文名稱(外文):Development and realization of high-gain conformal phased array antenna with switched-beam and its conic effect calibrated technique for 5G small base stations
指導教授:陳華明陳華明引用關係林憶芳林憶芳引用關係
指導教授(外文):CHEN, HUA-MINGLin, YI-FANG
口試委員:邱宗文周良哲陳華明林憶芳
口試委員(外文):CHIOU, TZUNG-WERNCHOU, LIANG-CHECHEN, HUA-MINGLin, YI-FANG
口試日期:2021-07-30
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:93
中文關鍵詞:微型化高增益天線波束指向操作共形陣列均勻圓形陣列圓錐效應校正雙模式波束成形比對
外文關鍵詞:compact high-gain antennabeam pointing operationconformal arrayuniform circular arrayconic-effect calibrateddual-mode beamforming comparison
相關次數:
  • 被引用被引用:1
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文將針對新一代通訊市場需求作為高增益天線設計目標,結合各場所之情境應用,於不同架設天線的高度,設計具有傾斜角輻射之定向波束,如室內及大樓帷幕牆壁上,或是放置在具有圓弧面的金屬物件上。天線設計一共引用相控陣列因子及天線單元關掉之雙重運用,形成七單元多天線縮小化形式,陣列間距僅需十分之一波長,並結合相控陣列因子的相位差分佈,選擇既定波束操控及抑制其餘旁波瓣之場型分佈,同時加強對小基站垂直面向下旁波瓣零點的補償,以改善對基站近區之訊號不佳的情況,並進行各天線之單元關掉分析最佳化分佈,可簡化饋入網路設計架構,量測的天線效率與增益皆大於70 %、7.5 dBi。然而,在實務情境中,後端系統有可能造成輸出振幅及相位誤差,導致陣列天線場型失真情況,藉由本文提出的雙模式場型比對方式,可有效改善後端系統之定向波束追蹤性能,且在不同模式下的場型亦不會互相干擾。最後,無論是任意共形陣列及均勻圓形陣列天線,皆提出解決圓錐效應校正公式與研究過程,將有效解決陣列天線擺放在圓弧面,導致嚴重的旁波瓣位準過高及場型失真問題。
In this thesis, the design of high-gain antennas is based on the needs of the new generation of the communication market, It is also recommended that the application can be flexibly deployed in different places. At different antenna heights, the offset angle required for the high-gain field will be adjusted in advance. With the ingenious dual use of the phased array factor and the missing source of the antenna unit, the seven-element antennas can be used to reduce the distance between the array spacing is only one-tenth, select the established beam steering and suppress the field distribution of the other side lobes to improve the poor signal to the near area of the base station, optimize the distribution of the load impedance of each antenna unit, reduce costs and establish a simplified feeder architecture in the network design. The measured antenna efficiency and gain are both greater than 70% and 7.5 dBi. However, in a practical situation, the back-end system may cause output amplitude and phase errors, resulting in field distortion of the array antenna. The dual-mode field comparison method proposed in this thesis can effectively improve the directional beam tracking of the back-end system performance. Finally, regardless of whether it is an arbitrary conformal array or a uniform circular array antenna, a calibration formula and research process are proposed to solve the conic effect, the effective solution is to place the array antenna on a circular arc surface, this improves severe sidelobe levels and arrays.
摘 要 iii
ABSTRACT iv
誌 謝 v
目 錄 vi
表 目 錄 viii
圖 目 錄 ix
第一章 序論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 研究動機與文獻導覽 4
1.4 論文架構 7
第二章 具有傾斜角輻射之高增益天線設計 9
2.1 前言 9
2.2 高增益天線波束指向操控方式研究 10
2.3 微型化高增益天線之波束指向操控設計構想 13
2.4 微型化高增益天線設計 25
2.5 章節結論 37
第三章 高增益線性陣列天線暨波束成形設計 38
3.1 前言 38
3.2 4×1線性相控陣列天線研究 39
3.3 4×1線性相控陣列天線暨波束成形電路設計 48
3.4 章節結論 55
第四章 共形相控陣列天線之圓錐效應校正與實現 56
4.1 前言 56
4.2 分析圓錐效應對輻射場型影響 58
4.3 圓錐效應校正公式設計 62
4.4 量測圓錐效應校正與實驗結果 68
4.5 章節結論 73
第五章 未來研究方向 74
5.1 前言 74
5.2 均勻圓形陣列天線設計 75
5.3 章節結論 77
第六章 結論與未來展望 78
參考文獻 79


[1]http://read01.com/OA87AJB.html
[2]https://scotland5gcentre.org/knowledge-bank/will-5g-affect-our-environment-and-landscape/
[3]A. Yi, L Xin, and B. Q Guo, “Developing a kind of microstrip array antenna with beam squint,” Proceeding. ISAPE 2000. 5th International Symposium on Antennas, Propagation and EM Theory,2000., pp. 443-446, Aug. 2000.
[4]K. L Wong, F. R. Hsiao, and T. W. Chiou, “Omnidirectional planer dipole array antenna,” IEEE Trans. Antenna Propag., vol. 52, No. 2, pp. 624-628, Feb. 2004.
[5]B. G. Duffley, G. A. Morin, M. Mikavica, and Y. M. M. Antar, “A wide-dand printed double-sided dipole array,” IEEE Trans. Antenna Propag.,vol. 52, No. 2, pp. 628-631, Feb. 2004.
[6]C. Wonkyu, J. M. Kim, J. H. Bae, and C. Pyo, “High gain and broadband microstrip array antenna using combined structure of corporate and series feeding,” IEEE Antennas and Propagation Society International Symposium., vol. 7, pp. 2484-2487, Jun. 2004.
[7]B. Lee, G. C. Kang, and S. H. Yang, “Broadband high-efficiency microstrip antenna array with corporate-series -feed,” Microwave and Opt. Technol. Lett., vol. 43, No. 3, pp. 181-183, Nov. 5, 2004.
[8]K. Hettak, G. Y. Delisle, M. G. Stubbs, and K. Verver, “A novel array antenna fed by CPW for an EHF in-building WLAN system,” IEEE Antennas and Propagation Society International Symposium., vol. 3A, pp. 495-498, July. 2005.
[9]J. G. Kim, H. S. Lee, H. S. Lee, J. B. Toon, and Songcheol Hong, “60-GHz CPW- fed post-supported patch antenna using micromatchining technology,” IEEE Microw Wireless Compon. Lett.,vol. 15, No. 10, pp. 635-637, Oct. 2005.
[10]O. Lafond, M. Himdi, O. Vendier, and Y. Cailloce, “A wideband low-profile microstrip antenna and array,” Microwave and Opt. Technol. Lett., vol. 48, No. 4, pp. 729-730, Apr. 2006.
[11]H.Wang, X. B. Huang, and D. G. Fang, “A novel array antenna fed by CPW for an EHF in-building WLAN system,” IEEE Antennas Wireless., vol. 7, pp. 9-12, Feb. 2008.
[12]V. P. Sarin and K. Vasudevan, "Compact high gain stacked offset broadband microstrip antennas as an alternative to normal stacked and array configurations," in Proceedings of the 2012 IEEE International Symposium on Antennas and Propagation, 2012, pp. 1-2.
[13]E. Nishiyama, M. Aikawa, and S. Egashira, "Stacked microstrip antenna for wideband and high gain," IEE Proceedings - Microwaves, Antennas and Propagation, vol. 151, no. 2, 2004.
[14]N. Amiri, K. Forooraghi, and R. Dehbashi, "A compact dual-polarized aperture-coupled stacked patch antenna for GSM900 MHz," in Applied Electromagnetics., APACE 2005, pp. 79-81, 2005.
[15]M. Al-Tikriti, S. Koch, and M. Uno, "A compact broadband stacked microstrip array antenna using eggcup-type of lens," Microwave and Wireless Components Letters, Vol. 16, pp. 230-232, 2006.
[16]Y. Ge, T. Wei, and Z. Hai, "Stacked compact dielectric resonator antennas for broadband applications," Antennas, Propagation & EM Theory (ISAPE), pp.117-120, 2012.
[17]L. Han, W. Zhang, X. Chen, G. Han, and R. Ma, "Design of compact differential dual-frequency antenna with stacked patches," IEEE Trans. Antennas Propag., Vol. 58, No. 4, pp.1387 -1392, 2010.
[18]R. M. C. Mestrom, T. J. Coenen, and A. B. Smolders, "Adaptive downtilt for cellular base stations," in 2012 International ITG Workshop on Smart Antennas (WSA), 2012, pp. 162-167.
[19]T. J. Coenen, R. M. C. Mestrom, and A. B. Smolders, "A MEMS-based adaptive downtilt antenna for cellular base stations," in 2013 7th European Conference on Antennas and Propagation (EuCAP), 2013, pp. 638-642.
[20]Y. He, W. Tian, and L. Zhang, "A novel dual-broadband dual-polarized electrical downtilt base station antenna for 2G/3G applications," IEEE Access, vol. 5, pp. 15241-15249, 2017.
[21]Y. He, J. Li, S. W. Wong, X. Pan, L. Zhang, and Z. N. Chen, "A miniaturized base station antenna with novel phase shifter for 3G/LTE applications," IEEE Access, vol. 6, pp. 52877-52888, 2018.
[22]D. M. Pozar, Microwave engineering, 3rd edition, John Wiley & Sons, Inc., pp. 517-518, 2005.
[23]J. Blass, “Multi-directional antenna: New approach top stacked beams”, IRE Int Convention record, Pt 1, pp 48–50, 1960.
[24]W. Rotman and R.F. Tuner, “Wide-angle microwave lens for line source applications”, IEEE Trans. on Antennas and Propa., v11, pp. 623–632, 1963.
[25]J. Butler and R. Lowe, “Beamforming matrix simplifies design of electronically scanned antennas”, Electron Design 9, pp. 170–173, 1961.
[26]S. Chae, G. Kim, H. Jo, I. Hwang, Y. Cho, and J. Yu, "Array antenna with suppressed side lobe level for millimeter-wave applications," in 2018 International Symposium on Antennas and Propagation (ISAP), 2018, pp. 1-2.
[27]S. Yasini and K. Mohammadpour-Aghdam, "Design and simulation of a comb-line fed microstrip antenna array with low side lobe level at 77GHz for automotive collision avoidance radar," in 2016 Fourth International Conference on Millimeter-Wave and Terahertz Technologies (MMWaTT), 2016, pp. 87-90.
[28]145-1993-IEEE Standard Definitions of Terms for Antennas.
[29]V. Jaeck, L. Bernard, K. Mahdjoubi, R. Sauleau, S. Collardey, P. Pouliguen, and P. Potier, “A switched-beam conformal array with a 3-D beam forming capability in C-band,” IEEE Trans. Antennas Propa., vol. 65, no. 6, pp. 2950-2957, June 2017.
[30]K. Xu, D. Ye, Z. Zhu, J. Huangfu, Y. Sun, C. Li, and L. Ran, “Analytical beam forming for circularly symmetric conformal apertures,” IEEE Trans. Antennas Propa., vol. 63, no. 4, pp. 1458-1464, Apr. 2015.
[31]Q. Chen, Z. Hu, Z. Shen, and W. Wu, “2–18 GHz Conformal low-profile log-periodic array on a cylindrical conductor,” IEEE Trans. Antennas Propa., vol. 66, no. 2, pp. 729-736, Feb. 2018.
[32]Y. Xia, B. Muneer, and Q. Zhu, “Design of a full solid angle scanning cylindrical and conical phased array antennas,” IEEE Trans. Antennas Propa., vol. 65, no. 9, pp. 4645-4655, Sept. 2017.
[33]S. Li, Z. Zhang, J. Wang, and X. He, “Design of conformal lens by drilling holes materials using quasi-conformal transformation optics,” Optics Express., vol. 22, no. 21, pp. 25455-25465, 2014.
[34]S. Mohammadi, A. Ghani, and S. H. Sedighy, “Direction of arrival estimation in conformal microstrip patch array antenna,” IEEE Trans. Antennas Propa., vol. 66, no. 1, pp. 511-515, Jan. 2018.
[35]B. D. Braaten, S. Roy, S. Nariyal, M. A. Aziz, N. F. Chamberlain, I. Irfanullah, M. T. Reich, and D. E. Anagnostou, “A self-adapting flexible (SELFLEX) antenna array for changing conformal surface applications,” IEEE Trans. Antennas Propa., vol. 61, no. 2, pp. 655-665, Feb. 2013.
[36]H. Xu, J. Cui, J. Duan, B. Zhang, and Y. Tian, “Versatile conical conformal array antenna based on implementation of independent and endfire radiation for UAV applications,” IEEE Access., vol. 7, pp. 31207-31217, Mar. 2019.
[37]S. Xiao, S. Yang, H. Zhang, Q. Xiao, Y. Chen, and S. W. Qu, “Practical implementation of wideband and wide-scanning cylindrically conformal phased array,” IEEE Trans. Antennas Propa., vol. 67, no. 8, pp. 5729-5733, Aug. 2019.
[38]Y. B. Kim, S. Lim, and H. L. Lee, “Electrically conformal antenna array with planar multipole structure for 2-D wide angle beam steering,” IEEE Acess, vol. 8, pp. 157261-157269, 2020.
[39]http://www.mobi-antenna.com/uploadfiles/2017/07/20170724121300130.pdf
[40]J. D. Kraus and R. J. Marhefka, “Antennas For All Applications”,pp. 278-341, 1021-1025, 845-859, 625-687, New York: Wiley, 2003.
[41]A. Kiani, F. Geran, S. M. Hashemi, and K. Forooraghi, "A presentation of a mathematical formula to design of a quasi uniform leaky wave antenna with ultralow sidelobe level," IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 5, pp. 901-905, 2019.
[42]M. T. Mu and Y. J, Cheng, " Low sidelobe level short leaky wave antenna based on single layer PCB based substrate integrated image guide ", IEEE Antennas and Wireless Propagation Letters , vol. 17, no. 8, pp. 1519-1523, 2018.
[43]D. M. Pozar, Microwave Engineering, pp. 56-61, pp.178-181, pp.326-332, 2012.
[44]J. Butler and R. Lowe, “Beamforming matrix simplifies design of electronically scanned antennas”, Electron Design 9, pp. 170–173, 1961.
[45]J. Blass, “Multi-directional antenna: New approach top stacked beams”, IRE Int Convention record, Pt 1, pp 48–50, 1960.
[46]M. L. Chuang, "Miniaturized ring coupler of arbitrary reduced size," IEEE Microw. Compon. Lett., vol. 15, no. 1, pp. 16-18, Jan., 2005.(SCI, EI).
[47]T. Miura and L. Davis, “Evaluation of intermodulation distortion of a ferrite element by the two-tone method,” IEEE Trans. Microw. Theory Techn., vol. 57, no. 6, pp. 1500–1507, Jun. 2009.
[48]A. Van Bezooijen, R. Mahmoudi, and A. H. M. Van Roermund, “Adaptive methods to preserve power amplifier linearity under antenna mismatch conditions,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 52, no. 10, pp. 2101– 2108, Oct. 2005.
[49]M. Vu and A. Paulraj, "MIMO wireless linear precoding," IEEE Signal Processing Magazine, vol. 24, no. 5, pp. 86-105, 2007.
[50]廖家德,適用於B4G / 5G 行動通訊網路之智慧型無線基地台天線設計與實現, 博士論文,電子工程系研究所,國立高雄應用科技大學, 民國一零六年。
[51]陳偉至高增益可控波束MIMO天線研究, 博士論文,電子工程系研究所,國立高雄科技大學, 民國一零八年。
[52]Popov M and Sailing He, "Design of an automatic impedance matching device," Microwave & Optical Technology Letters, vol.20, pp. 236-240, 1999.
[53]C. A. Balanis, Antenna theory analysis and design 2nd Edition, pp.285-297, pp.783-792, 1997.
[54]H. J. Visser, Array and Phased Array Antenna Basics 1st Edition, pp.48-61, pp.246-255, 2005.
[55]H. Zhu, H. Sun, B. Jones, and Y. Jay Guo, "Wideband dual-polarized multiple beam-forming antenna arrays", IEEE AP. , VOL. 67, NO. 3, MARCH 2019.

電子全文 電子全文(網際網路公開日期:20260805)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top