跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 02:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊哲愷
研究生(外文):YANG, ZHE-KAI
論文名稱:應用於第五代行動通訊穿戴裝置天線與毫米波相控陣列天線之設計
論文名稱(外文):Design of wearable devices antennas and millimeter-wave phased array antennas for fifth-generation mobile communication
指導教授:陳華明陳華明引用關係林憶芳林憶芳引用關係
指導教授(外文):CHEN, HUA-MINGLIN, YI-FANG
口試委員:陳文山陳振聲陳華明林憶芳
口試委員(外文):CHEN, WEN-SHANCHEN, JIN-SENCHEN, HUA-MINGLIN, YI-FANG
口試日期:2021-07-30
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:109
語文別:中文
論文頁數:98
中文關鍵詞:金屬邊框穿戴式天線MIMO天線設計金屬錶帶平面式八木天線相互耦合毫米波相控陣列天線波束成型
外文關鍵詞:Metal frame wearable antennaMIMO antenna designMetal strapPlanar Yagi antennaMutual couplingMillimeter wave phased array antennasBeamforming
相關次數:
  • 被引用被引用:1
  • 點閱點閱:145
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究應用於第五代通訊多集成天線整合穿戴式裝置與毫米波相控陣列天線之設計,操作頻段分別於5G Frequency Range 1和Frequency Range 2,研究各頻段天線屬性。
第一款為應用於第五代通訊多集成天線整合穿戴式裝置,應用頻段為5G FR1 n77/78/79 頻段。外觀採用金屬邊框並在天線的設計上與金屬邊框有效的結合,透過場型分集機制設計5G 2 × 2 MIMO天線,最後優化天線輻射場型並分析穿戴式天線上手之輻射效率,使用CST Studio Suite 模擬SAR極值與分佈。
第二款天線為平面式八木線性陣列天線之設計,應用於5G FR2 n261 頻段。從中探討了單天線集成巴倫饋入及阻抗匹配原理,雙天線單元的相互耦合特性和八天線單元的波束成型的技術。
第三款平面式八木線性陣列天線結合功率配器設計,將第二款平面式八木線性陣列天線透過四分之一波長阻抗轉換設計出T-junction功率分配器,最後進行模擬與量測並證明所設計之天線實際可行性。
第四款天線將功率配器導入延遲線設計,設計功率分配器輸出端的電器長度不等,使每個輸出端產生相位差並使主波束角度偏移。驗證所設計的平面式八木線性陣列天線搭配T-junction功率分配器的情況下,透過有效的解耦結構可以應用於波束成型的技術並同時擁有良好的性能。

關鍵詞:金屬邊框穿戴式天線、MIMO天線設計、金屬錶帶、平面式八木天線、相互耦合、毫米波相控陣列天線、波束成型


This thesis mainly studies the design of the fifth-generation communication multi-integrated antenna integrated wearable device and millimeter-wave phased array antennas, operating frequency bands are 5G Frequency Range 1 and Frequency Range 2, respectively, and the antenna properties of each frequency band are studied.
The first one is multiple integrated antennas for wearable fifth-generation communication, the application frequency band is 5G FR1 n77/78/79 band. The exterior is a metal frame, and the antenna design and the metal frame are effectively combined, through the pattern diversity mechanism design 5G 2 × 2 MIMO antenna, finally optimize the antenna radiation pattern and analyze the radiation efficiency of the wearable antenna and use CST Studio Suite to simulate the SAR extreme value and distribution.
The second antenna is design of planar Yagi linear array antennas, applied to the 5G FR2 n261 band. It discusses the principle of single-antenna integrated balun feeding and impedance matching, the mutual coupling characteristics of dual-antenna units, and the technology of beamforming with eight-antenna units.
The third planar Yagi linear array antennas combines the design of a power divider and the second planar Yagi linear array antennas is designed to a T-junction power divider through a quarter-wave transformer. Finally, perform simulation and measurement and prove the practical feasibility of the designed antenna.
The fourth antenna introduces the power divider into the delay line design and designs the power divider output port with different electrical lengths so that each output port generates a phase difference and the main beam angle is shifted. It is verified that when the designed planar Yagi linear array antennas are matched with a T-junction power divider, it can be applied to beamforming technology with good performance through an effective coupling structure.
Keywords: Metal frame wearable antenna, MIMO antenna design, Metal strap, Planar Yagi antenna, Mutual coupling, Millimeter wave phased array antennas, Beamforming

摘要 i
ABSTRACT ii
誌 謝 iii
目錄 iv
表目錄 vi
圖目錄 vii
第一章 序論 1
1.1研究背景 1
1.2研究動機 2
1.3論文架構 3
第二章 應用於第五代通訊多集成天線整合穿戴式裝置 4
2.1前言 4
2.2多天線配置架構與設計 5
2.2.1穿戴式天線系統結構 5
2.2.2 5G FR1 2 × 2 MIMO天線配置與設計 7
2.2.3 WLAN 2.4/5G band天線配置與設計 8
2.2.4 GSM 850/900與GPS 1575天線配置與設計 9
2.3天線實驗測量結果與討論 11
2.3.1實驗和測量結果 11
2.3.2參數探討 17
2.3.3場型分集和MIMO特性探討 29
2.4 手部模組探討與分析 32
2.4.1手部模組模擬結果分析與探討 32
2.4.2 SAR值評估 37
2.5 結論 42
第三章 平面式八木線性陣列天線之設計 43
3.1前言 43
3.2陣列天線原理 43
3.2.1兩點波源振幅和相位相同 43
3.2.2兩點波源振幅相同但任意相位差 47
3.3相控陣列天線原理 48
3.3.1波束方向 48
3.3.2線性陣列的陣列因數 52
3.3.3波束寬度 55
3.3.4相互耦合 56
3.4天線設計原理與結構 57
3.4.1天線設計原理 57
3.4.2單天線單元之平面式八木天線 60
3.4.3兩天線單元之平面式八木天線 63
3.4.4八天線單元之平面式八木陣列天線 66
3.5 結論 68
第四章 平面式八木線性陣列天線結合功率分配器設計 69
4.1前言 69
4.2 T-junction功率分配器 70
4.2.1無損功率分配器原理 71
4.2.2理想T-junction功率分配器 73
4.3天線設計原理與結構 74
4.4天線實驗測量結果與討論 77
4.5結論 82
第五章 平面式八木線性陣列天線結合延遲線功率分配器 83
5.1前言 83
5.2天線設計原理與結構 84
5.3天線實驗測量結果與討論 90
5.4結論 94
第六章 研究總結 95
參考文獻 96

[1]M. Fan, C. Wen, and J. Tang, "Design of a smartwatch for IoT application under 5G environment," 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), vol. 1, pp. 306-309, 2020.
[2]GIGABYTE. Multi-access Edge Computing Available: https://www.gigabyte.com/tw/Glossary/mobile-edge-computing
[3]S.-Y. Lien, S.-L. Shieh, Y. Huang, B. Su, Y.-L. Hsu, and H.-Y. Wei, "5G new radio: waveform, frame structure, multiple access, and initial access," IEEE communications magazine, vol. 55, no. 6, pp. 64-71, 2017.
[4]N. Javaid, A. Sher, H. Nasir, and N. Guizani, "Intelligence in IoT-based 5G networks: opportunities and challenges," IEEE Communications Magazine, vol. 56, no. 10, pp. 94-100, 2018.
[5]User Equipment (UE) Radio Transmission and Reception; Part 2: range 2 standalone (Release 15), document TS38.101-2 v15.0.0, Jun. 2018.
[6]Sulyman, A. T. Nassar, M. K. Samimi, G. R. MacCartney, T. S. Rappaport, and A. Alsanie, "Radio propagation path loss models for 5G cellular networks in the 28 GHz and 38 GHz millimeter-wave bands," IEEE communications magazine, vol. 52, no. 9, pp. 78-86, 2014.
[7]W.-Y. Li, W. Chung, and K.-L. Wong, "Highly-integrated dual-band mmWave antenna array for 5G mobile phone application," 2020 14th European Conference on Antennas and Propagation (EuCAP), pp. 1-5, 2020.
[8]D. Wu and S. Cheung, "A cavity-backed annular slot antenna with high efficiency for smartwatches with metallic housing," IEEE Transactions on Antennas and Propagation, vol. 65, no. 7, pp. 3756-3761, 2017.
[9]B. Wang and S. Yan, "Design of smartwatch integrated antenna with polarization diversity," IEEE Access, vol. 8, pp. 123440-123448, 2020.
[10]C. H. Chen, Y. F. Lin, P. W. Huang, H. M. Chen, and C. T. Liao, "Design of multi‐band antenna for LTE wearable device with shared slots and radiators for smart watch," International Journal of RF and Microwave Computer‐Aided Engineering, vol. 30, no. 11, p. e22415, 2020.
[11]S. W. Su and Y. T. Hsieh, "Integrated LDS antenna for B 13 and B 4/B 3/B 2/B 1 LTE operation in smartwatch," Microwave and Optical Technology Letters, vol. 59, no. 4, pp. 869-873, 2017.
[12]D. Wen, Y. Hao, H. Wang, and H. Zhou, "Design of a MIMO antenna with high isolation for smartwatch applications using the theory of characteristic modes," IEEE Transactions on Antennas and Propagation, vol. 67, no. 3, pp. 1437-1447, 2018.
[13]S.-W. Su and Y.-T. Hsieh, "Integrated metal-frame antenna for smartwatch wearable device," IEEE Transactions on Antennas and Propagation, vol. 63, no. 7, pp. 3301-3305, 2015.
[14]Z. Duan and L. J. xu, "Dual band wristband antenna with metal frame loaded for biomedical applications," Microwave and Optical Technology Letters, vol. 59, no. 9, pp. 2155-2159, 2017.
[15]C. H. Wu, K. L. Wong, Y. C. Lin, and S. W. Su, "Internal shorted monopole antenna for the watch‐type wireless communication device for Bluetooth operation," Microwave and Optical Technology Letters, vol. 49, no. 4, pp. 942-946, 2007.
[16]K. Zhao, Z. Ying, and S. He, "Antenna designs of smart watch for cellular communications by using metal belt," 2015 9th European Conference on Antennas and Propagation (EuCAP), pp. 1-5, 2015.
[17]L.-J. xu and Z. Duan, "Differential wide band metal-frame antenna for wristband applications," 2016 IEEE MTT-S International Microwave Workshop Series on Advanced Materials and Processes for RF and THz Applications (IMWS-AMP), pp. 1-3, 2016.
[18]D. Wu, S. Cheung, Q. Li, and T. Yuk, "Slot antenna for all-metal smartwatch applications," 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1-4, 2016.
[19]W. R. Deal, N. Kaneda, J. Sor, Y. Qian, and T. Itoh, "A new quasi-Yagi antenna for planar active antenna arrays," IEEE transactions on Microwave Theory and Techniques, vol. 48, no. 6, pp. 910-918, 2000.
[20]Y.-H. Suh and K. Chang, "A new millimeter-wave printed dipole phased array antenna using microstrip-fed coplanar stripline tee junctions," IEEE Transactions on Antennas and Propagation, vol. 52, no. 8, pp. 2019-2026, 2004.
[21]J.-Y. Shim, J.-G. Go, and J.-Y. Chung, "A 1-D tightly coupled dipole array for broadband mmWave communication," IEEE Access, vol. 7, pp. 8258-8265, 2019.
[22]S. x. Ta, H. Choo, and I. Park, "Broadband printed-dipole antenna and its arrays for 5G applications," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2183-2186, 2017.
[23]S. Zhu, H. Liu, Z. Chen, and P. Wen, "A compact gain-enhanced Vivaldi antenna array with suppressed mutual coupling for 5G mmWave application," IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 5, pp. 776-779, 2018.
[24]H. Liu, W. Yang, A. Zhang, S. Zhu, Z. Wang, and T. Huang, "A miniaturized gain-enhanced antipodal Vivaldi antenna and its array for 5G communication applications," IEEE Access, vol. 6, pp. 76282-76288, 2018.
[25]J. Bang and J. Choi, "A compact hemispherical beam-coverage phased array antenna unit for 5G mm-wave applications," IEEE Access, vol. 8, pp. 139715-139726, 2020.
[26]H. Koo and S. Nam, "Mechanism and elimination of scan blindness in a T-Printed dipole array," IEEE Transactions on Antennas and Propagation, vol. 68, no. 1, pp. 242-253, 2019.
[27]K.-L. Wong, H.-J. Chang, C.-Y. Wang, and S.-Y. Wang, "Very-low-profile grounded coplanar waveguide-fed dual-band WLAN slot antenna for on-body antenna application," IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 1, pp. 213-217, 2019.
[28]陳士元教授、吳瑞北教授、吳宗霖教授、馬自莊教授、蔡作敏教授、龎一心教授. (2019).電磁學線上學習平台. Available:http://em.emedu.org.tw/index.aspx
[29]P. Delos, B. Broughton, and J. Kraft, "Phased array antenna patterns—part 1: linear array beam characteristics and array factor," Phased Array Antenna Patterns—Series, p. 26, 2020.
[30]P. Delos, B. Broughton, and J. Kraft, "Phased array antenna patterns—part 2: grating lobes and beam squint," Phased Array Antenna Patterns—Series, p. 39, 2020.
[31]R. Li, T. Wu, B. Pan, K. Lim, J. Laskar, and M. M. Tentzeris, "Equivalent-circuit analysis of a broadband printed dipole with adjusted integrated balun and an array for base station applications," IEEE Transactions on Antennas and Propagation, vol. 57, no. 7, pp. 2180-2184, 2009.
[32]D. M. Pozar, Microwave engineering. John wiley & sons, 2011.
[33]J. Stiles. (2009). The T-Junction Power Divider. Available: http://www.ittc.ku.edu/~jstiles/723/handouts/section_7_2_The_T_Junction_Power_Divider_package.pdf
[34]Hasgall PA, Di Gennaro F, Baumgartner C, Neufeld E, Lloyd B, Gosselin MC, Payne D, Klingenbock A, Kuster N, “IT’IS Database for thermal and electromagnetic parameters of biological tissues,” Version 4.0, May 15, 2018


電子全文 電子全文(網際網路公開日期:20260805)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top