跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 04:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:莊英杰
研究生(外文):CHUANG, YING-JIE
論文名稱:應用於第五代通訊低特定電磁波能量吸收率智慧型眼鏡天線之設計
論文名稱(外文):Design of low SAR smart glasses antennas for fifth-generation communication
指導教授:陳華明陳華明引用關係林憶芳林憶芳引用關係
指導教授(外文):CHEN, HUA-MINGLIN, YI-FANG
口試委員:陳文山周良哲陳華明林憶芳
口試委員(外文):CHEN WEN-SHANCHOU LIANG-CHECHEN, HUA-MINGLIN, YI-FANG
口試日期:2022-07-28
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:84
中文關鍵詞:特定電磁波能量吸收率VR眼鏡天線AR眼鏡天線MIMO天線設計多模共振天線毫米波陣列天線
外文關鍵詞:Specific absorption rateVR glasses antennaAR glasses antennaMIMO antenna designMultimode resonant antennaMillimeter wave array antenna
相關次數:
  • 被引用被引用:2
  • 點閱點閱:183
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文提出應用於第五代通訊低特定電磁波能量吸收率智慧型眼鏡天線之設計,隨著元宇宙與第五世代行動通訊的發展,智慧型眼鏡成為全球各科技大廠積極布局的領域,提出兩款天線設計分別應用於VR及AR的智慧型眼鏡,眼鏡架構採用3D列印技術製造,與天線達到緊密結合。
第一款天線為具4X4 MIMO之第五代VR眼鏡天線設計,應用頻段為5G FR1 n77/78/79頻段。運用單極饋入耦合至金屬牆激發雙模態,透過模態分集機制設計4× 4 MIMO天線,最後運用天線相關係數計算MIMO多樣性指標係數(ECC、DG、TARC、MEG、CCL),符合低耦合特性。
第二款天線為應用於第五代通訊多模共振AR 眼鏡天線裝置,頻段涵蓋Wi-Fi 6E、5G FR1 n77/78/79 及mmWave n261,在Sub - 7GHz頻段下設計一款立體式結構具備Monopole、Slot及Loop三種共振模態耦合機制天線達到寬頻設計,運用多種縮小化設計,整體面積尺寸減少了50 %,在mmWave頻段使用1 × 4串列式 Dipole陣列天線,搭配T型功率分波器達到高增益,並加裝反射板於天線背面,增強天線指向性進而提升增益。
最後,分析加入人體頭顱模型對眼鏡天線的影響,使用HFSS模擬SAR值分佈圖,並針對不同的眼鏡材料進行探討,驗證所設計的VR/AR眼鏡天線符合實際應用環境且具有良好的性能。
In this thesis, the low SAR smart glasses antenna designed for fifth-generation communication. With the concept of Metaverse and the development of fifth-generation mobile communication, smart glasses have become an active area for global technology companies. Two antenna design solutions are proposed for VR and AR smart glasses. The skeleton of the glasses is manufactured by 3D printing technology and is closely integrated with the antenna.
The first antenna is a fifth generation VR glasses antenna with 4X4 MIMO in the 5G FR1 n77/78/79 bands.Dual mode excitation using a monopole feed coupled to a metal wall.Design of 4×4 MIMO antenna by modal diversity mechanism.Finally, the performance parameters (ECC, DG, TARC, MEG, CCL) of the MIMO antenna are calculated.The low coupling characteristics are satisfied.
The second antenna is a multimode resonant AR glasses antenna device ..The frequency bands cover Wi-Fi 6E, 5G FR1 n77/78/79 and mmWave n261. A three-dimensional structure with monopole, slot and loop mode coupling mechanisms was designed in the sub-7GHz band, enabling multiple miniaturized broadband designs and reducing the overall area size by 50%. A tandem dipole array antenna was used in the millimeter wave band. Use a power divider with a T-junction and add a reflector plate at the back of the antenna to improve the antenna gain.
Finally, the effect of adding the human skull model on the glasses antenna was analyzed, and the distribution of SAR values was simulated by HFSS.Comparison of different glasses skeleton materials.It is verified that the designed VR/AR glasses antenna is suitable for practical applications and has good performance.

摘 要 I
ABSTRACT II
誌 謝 III
目 錄 IV
表 目 錄 VI
圖 目 錄 VII
第一章 序論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 文獻導覽 4
1.4 論文架構 5
第二章 具4X4 MIMO之第五代VR眼鏡天線設計 6
2.1 前言 6
2.2 MIMO理論與參數說明 7
2.3 天線設計原理與架構 10
2.4 天線實驗與測量結果 12
2.5 結論 28
第三章 應用於第五代通訊多模共振AR眼鏡裝置 29
3.1 前言 29
3.2 T型接面功率分波器 30
3.3 天線設計原理與架構 35
3.4 天線實驗與測量結果 42
3.5 結論 66
第四章 特定電磁波能量吸收率分析與探討 67
4.1 前言 67
4.2 特定電磁波能量吸收率理論概述 68
4.3 穿戴時頭部對於天線性能之影響 70
4.4 智慧眼鏡機構擺放配置架構 78
4.5 結論 81
第五章 結論與未來發展 82
參考文獻 83

[1]全球眼鏡產業市場規模預測: https://kknews.cc/news/azy25rn.html.
[2]全球VR/AR裝置出貨量預估: https://www.trendforce.com.tw.
[3]S. Hong, S. H. Kang, Y. Kim, and C. W. Jung, “Transparent and flexible antenna for wearable glasses applications,” IEEE Transactions on Antennas and Propagation, vol. 64, no. 7, pp. 2797-2804, 2016.
[4]Apple invents an AR display for eyewear that accurately displays AR content in both bright or low light : https://www.patentlyapple.com.
[5]A. Cihangir, W. G. Whittow, C. J. Panagamuwa, F. Ferrero, G. Jacquemod, F. Gianesello, and C. Luxey, “Feasibility study of 4G cellular antennas for eyewear communicating devices,” IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1704-1707, 2013.
[6]A. Cihangir, C. Luxey, G. Jacquemod, R. Pilard, F. Gianesello, W. G. Whittow, and C. J. Panagamuwa, "Investigation of the effect of metallic frames on 4G eyewear antennas."
[7]M. S. Sharawi, “Printed multi-band MIMO antenna systems and their performance metrics [wireless corner],” IEEE Antennas and Propagation Magazine, vol. 55, no. 5, pp. 218-232, 2013.
[8]X. Zhang, Y. Li, W. Wang, and W. Shen, “Ultra-wideband 8-port MIMO antenna array for 5G metal-frame smartphones,” IEEE Access, vol. 7, pp. 72273-72282, 2019.
[9]P. Liu, Y. Zou, B. Xie, X. Liu, and B. Sun, “Compact CPW-fed tri-band printed antenna with meandering split-ring slot for WLAN/WiMAX applications,” IEEE Antennas and Wireless Propagation Letters, vol. 11, pp. 1242-1244, 2012.
[10]G. Pan, Y. Li, Z. Zhang, and Z. Feng, “A compact wideband slot-loop hybrid antenna with a monopole feed,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 7, pp. 3864-3868, 2014.
[11]B. Wang, Y.-C. Jiao, Z.-B. Weng, and T. Ni, “A compact broadband slot antenna for indoor distributed antenna systems,” Progress in Electromagnetics Research Letters, vol. 56, pp. 31-37, 2015.
[12]E. Cil and S. Dumanli, “The design of a reconfigurable slot antenna printed on glass for wearable applications,” IEEE Access, vol. 8, pp. 95417-95423, 2020.
[13]A. Cihangir, C. J. Panagamuwa, W. G. Whittow, F. Gianesello, and C. Luxey, “Ultrabroadband antenna with robustness to body detuning for 4G eyewear devices,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 1225-1228, 2017.
[14]W. Haydar, S. AlSayah, and R. Sarkis, "Design and analysis of conformal antennas for smart glasses," IET Conference Publications.
[15]H. Li, A. Tsiaras, and B. K. Lau, “Analysis and estimation of MIMO-SAR for multi-antenna mobile handsets,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 3, pp. 1522-1527, 2017.
[16]J. C. Lin, “Safety standards for human exposure to radio frequency radiation and their biological rationale,” IEEE Microwave Magazine, vol. 4, no. 4, pp. 22-26, 2003.
[17]T. Samaras, A. Christ, and N. Kuster, “Compliance assessment of the epithelial or absorbed power density below 10 GHz using SAR measurement systems,” Bioelectromagnetics, vol. 42, no. 6, pp. 484-490, 2021.
[18]H. H. Zhang, G. G. Yu, Y. Liu, Y. X. Fang, G. Shi, and S. Wang, “Design of low-SAR mobile phone antenna: theory and applications,” IEEE Transactions on Antennas and Propagation, vol. 69, no. 2, pp. 698-707, 2021.
[19]一級玩家宣傳照 : https://www.warnerbros.com.
[20]M. S. Sharawi, Printed MIMO antenna engineering: Artech House, 2014.
[21]D. M. Pozar, Microwave engineering: John wiley & sons, 2011.
[22]J. Stiles, The T-junction power divider : http://www.ittc.ku.edu/~jstiles/723/handouts/section_7_2_The_T_Junction_Power_Divider_package.pdf.
[23]毫米波天線量測系統 : https://www.bw-ant.com/product.html.
[24]ICNIRP GUIDELINES for limiting exposure to electromagnetic fields (100 KHZ TO 300 GHZ) :https://www.icnirp.org.
[25]FCC policy on human exposure to radio frequency electromagnetic fields : https://www.fcc.gov.
[26]台灣SAR值限制值 : https://www.ncc.gov.tw/chinese/index.aspx.
[27]cSARD6自動化SAR 測試系統 : https://speag.swiss.
[28]人體組織參數 : https://itis.swiss/news-events/news/latest-news.
[29]塑膠參數表 : http://yuamsong.com/en/engineering_table.htm.

電子全文 電子全文(網際網路公開日期:20270803)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top