跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊濠
研究生(外文):YANG,HAO
論文名稱:運用於第五代智慧型裝置之天線整合設計
論文名稱(外文):Design of integrated antennas for 5G smart devices
指導教授:陳華明陳華明引用關係林憶芳林憶芳引用關係
指導教授(外文):CHEN, HUA-MINGLIN, YI-FANG
口試委員:陳文祥陳建宏陳華明林憶芳
口試委員(外文):CHEN,WEN-SHYANGCHEN,CHIEN-HUNGCHEN, HUA-MINGLIN, YI-FANG
口試日期:2022-07-28
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:110
語文別:中文
論文頁數:62
中文關鍵詞:槽孔天線IFA天線虛短路MIMO 天線
外文關鍵詞:slot antennaIFA antennavirtual short circuitMIMO Antenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  本論文提出兩款設計分別應用於智慧型行動裝置與智慧型手錶,針對第五代行動通訊所做的設計,包含 LTE、WI-FI 6E、Sub 6 GHz 這些頻段,智慧型手機以槽孔天線為主要設計;智慧型手錶天線主體以耦合電容饋入式 IFA 天線設計。
  智慧型手機天線設計利用槽孔末端饋入所產生的虛短路,產生多模態,減少了天線的數量,其中覆蓋了 LTE 低頻、中高頻、WLAN 2.4 GHz、WLAN 5 GHz 以及 Sub 6 GHz 等頻段;利用輻射方向不同的方式,縮小天線之間的距離,將 WLAN 2.4 GHz 、WLAN 5 GHz 以及 FR 1 n77、n79 皆以 4 × 4 MIMO 天線的方式來增加傳輸效率。
  智慧型手錶天線主體以耦合電容饋入式 IFA 天線設計在基板厚度為 0.2 mm 的 FR4 基板上,使整體機構重量減輕,利用 IFA 天線多路徑特性,涵蓋了 FR 1 n77 ~ n79 與WI-FI 6E 全頻段,在有限的空間中,皆符合 2 × 2 MIMO 的標準

  This paper proposes two designs to be applied to smart mobile devices and smart watches respectively. The design for the fifth generation wireless systems, including LTE, WI-FI 6E, Sub 6 GHz frequency bands, the smart phone is mainly designed with slot antenna. The main body of the smart watch antenna is designed with a coupling capacitor fed IFA antenna.
  The smart phone antenna design uses the virtual short circuit generated by the non-terminal feeding of the slot to generate multi-modality and reduce the number of antennas. Frequency bands covers LTE low frequency, mid-high frequency, WLAN 2.4 GHz, WLAN 5 GHz and Sub 6 GHz. Using different radiation directions to reduce the distance between antennas, WLAN 2.4 GHz, WLAN 5 GHz and FR 1 n77, n79 are all used as 4 × 4 MIMO antennas to increase transmission efficiency.
  The main body of the smart watch antenna is designed on the FR4 substrate with a substrate thickness of 0.2 mm with a coupling capacitor fed IFA antenna, which reduces the weight of the overall mechanism. Using the IFA antenna multi-path feature, covering FR 1 n77 ~ n79 and WI-FI 6E frequency bands, in a limited space, all meet the 2 × 2 MIMO standard

摘要 i
ABSTRACT ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 序論 1
1.1 研究背景 1
1.2 研究動機 1
1.3 文獻導覽 2
1.4 論文架構 3
第二章運用於 5G 金屬邊框智慧型手機多天線設計 4
2.1 前言 4
2.2 天線原理與設計 4
2.3 天線實驗與量測結果 7
2.4 5G 智慧型手機多天線 MIMO 效能分析 29
2.5 結論 37
第三章 運用於 5G 智慧型穿戴式裝置之天線設計 38
3.1 前言 38
3.2 天線原理與設計 38
3.3 天線實驗與量測結果 40
3.4 5G 智慧型手錶多天線 MIMO 效能分析 55
3.5 結論 58
第四章 研究結論與未來展望 59
參考文獻 60

[1] N. Behdad and K. Sarabandi, “A wide-band slot antenna design employing a fictitious short circuit concept,” IEEE Trans. Antennas Propag., vol. 53, pp. 475-482, Jan. 2005.
[2] K. L. Wong and W. C. Wu, “Very-low-profile hybrid open-slot/closed-slot/inverted-F antenna for the LTE smartphone,” Microwave and Opt. Technol. Lett., vol. 58, No. 7, pp. 1572–1577, July 2016.
[3] I. R. R. Barani and K. L. Wong, “Dual-feed U-slot antenna having low envelope correlation coefficients for the LTE MIMO operation in the metal-framed smartphone,” Microwave. Opt. Technol. Lett., vol. 60, pp. 295-302, Feb. 2018.
[4] K. L. Wong and C. Y. Tsai, “IFA-based metal-frame antenna without ground clearance for the LTE/WWAN operation in the metal-casing tablet computer,” IEEE Trans. Antennas Propag., vol. 64, no. 1, pp. 53–60, Jan. 2016.
[5] C. Y. Tsai, K. L. Wong, and W. Y. Li, “Experimental results of the multi-Gbps smartphone with 20 MIMO antennas in the 20x12 MIMO operation,” Microwave Opt. Technol. Lett., vol. 60, pp. 2001-2010, Aug. 2018.
[6] L. Y. Chen and K. L. Wong, “Small-size half-loop frame antenna integrated with a USB connector and having a narrow ground clearance for the LTE metal-framed,” International Symposium on Antennas and Propagation (ISAP) 2016, Okinawa, pp. 718-719, Oct. 2016.
[7] Y. Liu, Y. Zhou, G. Liu, and S. Gong, “Hepta-band inverted-F antenna for metal-rimmed mobile phone applications,” IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 996–999, Oct. 2015.
[8] G. P. Gao, C. Yang, B. Hu, R. F. Zhang, and S. F. Wang “A wearable PIFA with an all-textile metasurface for 5 GHz WBAN applications,” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 2, Feb. 2019.
[9] H. D. Chen, Y. C. Tsai, C. Y. D. Sim, and C. Kuo, “Broadband eight-antenna array design for Sub-6 GHz 5G NR bands metal-frame smartphone applications,” IEEE Antennas and Wireless Propagation Letters, vol. 19, no. 7, July 2020.
[10] Y. S. Chen and T. Y. Ku, “A low-profile wearable antenna using a miniature high impedance surface for smartwatch applications,” IEEE Antennas and Wireless Propagation Letters, vol. 15, Oct. 2015.
[11] S. W. Su and Y. T. Hsieh, “Integrated metal-frame antenna for smartwatch wearable device,” IEEE Transactions on Antennas and Propagation, vol. 63, No. 7, July 2015.
[12] D. Wu and S. W. Cheung, “A cavity-backed annular slot antenna with high efficiency for smartwatches with metallic housing,” IEEE Transactions on Antennas and Propagation, vol. 65, no. 7, July 2017.
[13] J. Deng, J. Li, L. Zhao, and L. Guo, “A dual-band inverted-F MIMO antenna with enhanced isolation for WLAN applications,” IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 2270-2273, June 2017.
[14] D. Wu, S. W. Cheung, and T. I. Yuk, “Compact 3D -loop antenna with bandwidth enhancement for WWAN/LTE mobile-phones applications,” IET Microwaves, Antennas & Propagation, vol. 11, pp. 240–246, 2017.
[15] Y. Xu, Y. W. Liang, and H. M. Zhou, “Small-size reconfigurable antenna for WWAN/LTE/GNSS smartphone applications,” IET Microwaves, Antennas & Propagation, vol. 11, pp. 923–928, Jan. 2017.
[16] D. Huang, Z. Du, and Y. Wang, “Eight-band antenna for full-screen metal frame LTE mobile phones,” IEEE Transactions on Antennas and Propagation, vol. 67, no. 3, pp. 1527-1534, Mar. 2019.
[17] Y. Liu, J. Zhang, A. Ren, H. Wang, and Chow-Yen-Desmond Sim, “TCM-based hepta-band antenna with small clearance for metal-rimmed mobile phone applications,” IEEE Antennas and Wireless Propagation Letters, vol. 18, pp. 717–721, Apr. 2019.
[18] I. Syrytsin, S. Zhang, and G. F. Pedersen, “Performance investigation of a mobile terminal phased array with user effects at 3.5 GHz for LTE advanced,” IEEE Antennas and Wireless Propagation Letters, vol. 18, pp. 1847–1850, 2017.
[19] Z. Q. Xu, Q. Q. Zhou, Y. L. Ban, and S. S. Ang, “Hepta-band coupled-fed loop antenna for LTE/WWAN unbroken metal-rimmed smartphone applications,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 2, pp. 311–314, Feb. 2018.
[20] L. W. Zhang, Y. L. Ban, C. Y. D. Sim, J. Guo, and Z. F. Yu, “Parallel dual-loop antenna for WWAN/LTE metal-rimmed smartphone,” IEEE Transactions on Antennas and Propagation, vol. 66, no. 3, pp. 1217-1225, Mar. 2018.
[21] Y. Liu, Y. Luo, and S. Gong, “An antenna with a stair-like ground branch for octa-band narrow-frame mobile phone,” IEEE Antennas and Wireless Propagation Letters, vol. 17, pp. 1542-1546, Aug. 2018.
[22] L. Qu, H. Lee, H. Shin, M. G. Kim, and H. Kim, “ MIMO antennas using controlled orthogonal characteristic modes by metal rims,” IET Microwaves, Antennas & Propagation, vol. 11, pp. 1009–1015. Fed. 2017.

電子全文 電子全文(網際網路公開日期:20270803)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊