跳到主要內容

臺灣博碩士論文加值系統

(35.168.110.128) 您好!臺灣時間:2022/08/09 19:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:賴昱先
研究生(外文):Lai, Yu-Hsien
論文名稱:可用於腦壓量測之軟性壓力感測器開發
論文名稱(外文):Development of a flexible pressure sensor for brain pressure measurement
指導教授:徐文祥徐文祥引用關係
指導教授(外文):Hsu, Wen-Syang
口試委員:鍾添淦劉義強
口試委員(外文):Chung, Tien-KanLau, Gih-Keong
口試日期:2021-12-08
學位類別:碩士
校院名稱:國立陽明交通大學
系所名稱:機械工程系所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2021
畢業學年度:110
語文別:中文
論文頁數:40
中文關鍵詞:腦壓量測軟性壓力感測器小尺寸壓力感測器軟性神經探針壓阻式感測器
外文關鍵詞:brain pressure measurementflexible pressure sensortiny pressure sensorflexible neural probepiezoresistive sensor
相關次數:
  • 被引用被引用:0
  • 點閱點閱:104
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
腦壓量測為許多疾病治療過程中必要的程序,而目前臨床常用的方法易造成細菌感染、術後出血、傷口復原困難等問題。現有的量測方法中,包含了以導管與壓阻式感測器結合的方式,但其材料硬度較高,對腦組織損害較大,因此需要較軟的材質製作感測器。本研究欲開發一種軟性的壓阻式感測器作為腦壓量測使用,其量測範圍須符合人類腦壓範圍(0.93~3.33 kPa),並參考一種硬度可改變的軟性神經探針,於此PDMS探針本體中整合壓力感測器構造,以達到量測腦壓與降低腦組織傷害的目的,成為腦壓神經探針。本研究設計了三種版本的軟性壓力感測器,分別使用PEDOT:PSS和液態金屬鎵(Ga)作為導電材料。其中PEDOT:PSS壓力感測器包含兩種設計,一種能成功達到腦壓量測範圍,靈敏度約0.04\ {kPa}^{-1},但尺寸不符合腦壓神經探針需求;一種為滿足尺寸需求大幅縮小了感測器的規格,但由於製程問題無法如預期完成。Ga壓力感測器使用前述第二種設計並將導電材料置換為Ga,能滿足尺寸需求,靈敏度約0.003\ {kPa}^{-1},但可用範圍偏高。
During medical treatments of several diseases, the measurement of brain pressure is a necessary procedure, while measuring methods that are common seen in clinical use at present easily cost medical issues, such as bacterial infecting, after surgery bleeding and difficulty in wound recovering. The main concern of a method that combines catheter and piezoresistive pressure sensor is that the high hardness of its compositions, those materials injure brain tissue more, so it is necessary to use softer material to produce the pressure sensor.

This work wishes to develop a flexible piezoresistive pressure sensor for brain pressure measurement, while its operating range must fit the range of human brain pressure, which is precisely between 0.93 and 3.33 kPa. We take a flexible, hardness variable neural probe design as a reference, expecting to integrate a pressure sensor on the PDMS-based microprobe, in order to measure brain pressure as well as reduce damage on brain tissues.

We present three versions of flexible pressure sensors, applying PEDOT: PSS and Gallium as conductive materials, respectively. There are two designs for PEDOT: PSS pressure sensors, one of them with sensitivity of 0.04\ {kPa}^{-1} can reach the range of brain pressure successfully, while the size of the sensor is incompatible for the neural probe; to meet the demand of neural probe, the size of the other design is massively reduced, however it is not available due to manufacturing issues. After that we replace PEDOT: PSS with Gallium as conductive material in the previous design, while the sensor ends up with sensitivity of 0.003\ {kPa}^{-1}, fits the size of the neural probe, but the measuring range is slightly higher than the brain pressure range.
摘要 i
Abstract ii
誌謝 iv
目錄 vii
表目錄 viii
圖目錄 viii
第一章、緒論 1
1.1 研究動機 1
1.2 文獻回顧 1
1.2.1 腦壓量測 1
1.2.2 軟性神經探針 4
1.2.3 軟性壓力感測器 6
1.2.4 PDMS壓阻式感測器 8
1.2.5 文獻總結 9
1.3 研究目標 9
第二章、研究方法 10
2.1 實驗材料與設備 10
2.1.1 實驗材料 10
2.1.2 實驗設備 11
2.2 PEDOT:PSS壓力感測器-設計一 12
2.2.1 概念設計 12
2.2.2 製作方法 12
2.2.3 組裝與量測 15
2.3 PEDOT:PSS壓力感測器-設計二 17
2.3.1 概念設計 17
2.3.2 PDMS 薄膜製作方法 19
2.3.3 組裝與量測 20
2.4 Ga壓力感測器-設計三 22
2.4.1 概念設計與製作方法 22
2.4.2 量測方法 23
第三章、研究結果 25
3.1 PEDOT:PSS壓力感測器-設計一 26
3.1.1 導電層塗布 26
3.1.2 銀膠接點 27
3.1.3 量測結果 29
3.2 PEDOT:PSS壓力感測器-設計二 30
3.3 Ga壓力感測器-設計三 31
第四章、總結 34
4.1 結論 34
4.2 未來工作 36
參考文獻 38
[01] R. S. Kumaran, “System Design and Evaluation of a Low Cost Epidural Intracranial Pressure Monitoring System, Integrable with ECoG Electrodes”, A Thesis Presented in Partial Fulfillment of the Requirements for the Degree Master of Science, Arizona State University, U. S. A., 2015
[02] W. D. Freeman, “Management of Intracranial Pressure”, Neurocrit. Care, Vol.21, No.5, p. 1299-1323, 2015
[03] L. Ganti, Atlas of Emergency Medicine Procedures, Springer, New York, 2016
[04] X. Wu, H. Peng, “Polymer-Based Flexible Bioelectronics”, Sci. Bull., Vol. 64, Issue 9, p. 634-640, 2019
[05] X. Wen, B. Wang, S. Huang, T. Liu, M. S. Lee, P. S. Chung, Y. T. Chow, I. W. Huang, H. G. Monbouquette, N. T. Maidment, P. Y. Chiou, “Flexible, Multifunctional Neural Probe with Liquid Metal Enabled, Ultra-Large Tunable Stiffness for Deep-Brain Chemical Sensing and Agent Delivery”, Biosens. Bioelectron., Vol. 131, p. 37-65, 2019
[06] F. Wu, L. W. Tien, F. Chen, J. D. Berke, D. L. Kaplan and E. Yoon, "Silk-Backed Structural Optimization of High-Density Flexible Intracortical Neural Probes", J. Microelectromech. Syst., Vol. 24, no. 1, p. 62-69, Feb. 2015
[07] J. W. Jeong, J. G. McCall, G. Shin, Y. Zhang, R. Al-Hasani, M. Kim, S. Li, J. Y. Sim, K. I. Jang, Y. Shi, D. Y. Hong, Y. Liu, G. P. Schmitz, L. Xia, Z. He, P. Gamble, W. Z. Ray, Y. Huang, M. R. Bruchas, J. A. Rogers, “Wireless Optofluidic Systems for Programmable In Vivo Pharmacology and Optogenetics”, Cell, Vol. 162, no. 3, p. 662-674, 2015
[08] L. Luan, X. Wei, Z. Zhao, J. J. Siegel, O. POTNIS, C. A. Tuppen, S. Lin, S. Kazmi, R. A. Fowler, S. Holloway, A. K. Dunn, R. A. Chitwood, C. Xie, “Ultraflexible Nanoelectronic Probes Form Reliable, Glial Scar–Free Neural Integration”, Sci. Adv., Vol. 3, no. 2, e1601966, 2017
[09] J. Subbaroyan, D. C. Martin, D. R. Kipke, “A finite-element model of the
mechanical effects of implantable microelectrodes in the cerebral cortex”, J. Neural Eng., 2, 103–113, 2005
[10] J. K. Nguyen, D. J. Park, J. L. Skousen, A. E. Hess-Dunning, D. J. Tyler, S. J. Rowan, C. Weder, J. R. Capadona, “Mechanically-compliant intracortical implants reduce the neuroinflammatory response”, J. Neural Eng., 11(5), 056014, 2014
[11] V. Amoli, S. Y. Kim, J. S. Kim, H. Choi, J. Koo, D. H. Kim, “Biomimetics for High-Performance Flexible Tactile Sensors and advanced artificial sensory systems”, J. Mater. Chem. C, 7, 14816-14844, 2019
[12] X. Wang, Y. Gu, Z. Xiong, Z. Cui, T. Zhang, “Silk-Molded Flexible, Ultrasensitive, and Highly Stable Electronic Skin for Monitoring Human Physiological Signals”, Adv. Mater., 26, 1336–1342, 2014
[13] C. Ma, C. Chang, T. Lin, Y. J. Yang, "Highly Sensitive Tactile Sensing Array Realized Using a Novel Fabrication Process with Membrane Filters", J. Microelectromech. Syst., Vol. 24, no. 6, p. 2062-2070, 2015
[14] Z. Wang, S. Wang, J. Zeng, X. Ren, A.J. Chee, B. Y. Yiu, W. C. Chung, Y. Yang, A. C. Yu, R. C. Roberts, A. C. Tsang, K. W. Chow, P. K. Chan, “High Sensitivity, Wearable, Piezoresistive Pressure Sensors Based on Irregular Microhump Structures and Its Applications in Body Motion Sensing”, Small, Vol.12, no. 28, p. 3827-36, 2016
[15] G. Y. Bae, S. W. Pak, D. Kim, G. Lee, D. H. Kim, Y. Chung, K. Cho, “Linearly and Highly Pressure-Sensitive Electronic Skin Based on a Bioinspired Hierarchical Structural Array”, Adv. Mater., Vol. 28, p. 5300-5306, 2016
[16] I. R. Minev, P. Musienko, A. Hirsch, Q. Barraud, N. Wenger, E. M. Moraud, J. Gandar, M. Capogrosso, T. Milekovic, L. Asboth, R. F. Torres, N. Vachicouras, Q. Liu, N. Pavlova, S. Duis, A. Larmagnac, J. Vörös, S. Micera, Z. Suo, G. Courtine, S. P. Lacour, “Biomaterials. Electronic dura mater for long-term multimodal neural interfaces”, Science, 347(6218), 159-163, 2015
[17] J. H. Lee, H. Kim, J. H. Kim, S. H. Lee, “Soft implantable microelectrodes for future medicine: prosthetics, neural signal recording and neuromodulation”, Lab Chip, 16, 959-976, 2016
[18] Z. Wang, A. A. Volinsky, N. D. Gallant, “Crosslinking Effect on Polydimethylsiloxane Elastic Modulus Measured by Custom-Built Compression Instrument”, J. APPL. POLYM. SCI., 41050, 2014
[19] M. Vosgueritchian, D. J. Lipomi, Z. Bao, “Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes”, Adv. Funct. Mater., 22, 421-428, 2012
[20] Y. Li, X. Li, S. Zhang, S. Liu, N. Hamad, S. R. Bobbara, D. Pasini, F. Cicoira, “Autonomic Self-Healing of PEDOT:PSS Achieved Via Polyethylene Glycol Addition”, Adv. Funct. Mater., 30, 2002853, 2020
[21] R. Luo, H. Li, B. Du, S. Zhou, Y. Zhu, “A simple strategy for high stretchable, flexible and conductive polymer films based on PEDOT:PSS-PDMS blends”, Org. Electron., 76, 105451, 2020
[22] H. H. Jang, J. S. Park, B. Choi, “Flexible piezoresistive pulse sensor using biomimetic PDMS mold replicated negatively from shark skin and PEDOT:PSS thin film”, Sens. Actuators, A, 286, 07-114, 2019
[23] N. Hallfors, A. Khan, M. D. Dickey, A. M. Taylor, “Integration of pre-aligned liquid metal electrodes for neural stimulation within a user-friendly microfluidic platform”, Lab Chip, 13, 522–526, 2013
[24] M. D. Dickey, “Stretchable and Soft Electronics using Liquid Metals”, Adv. Mater., 29, 27, 1606425, 2017
[25] Y. T. Chow, T. Man, G. F. Acosta‐Vélez, X. Zhu, X. Wen, P. S. Chung, T. “Leo” Liu, B. M. Wu, P. Y. Chiou, “Liquid Metal-Based Multifunctional Micropipette for 4D Single Cell Manipulation”, Adv. Sci., 5, 1700711, 2018
[26] X. Fan, B. Xu, N. Wang, J. Wang, S. Liu, H. Wang, F. Yan, “Highly Conductive Stretchable All-Plastic Electrodes Using a Novel Dipping-Embedded Transfer Method for High-Performance Wearable Sensors and Semitransparent Organic Solar Cells”, Adv. Electron. Mater., 1600471, 2017
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top