跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/09/28 05:26
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:王韋勝
研究生(外文):Wang, Wei-Sheng
論文名稱:基於內容偏好圖卷積網路之完全冷啟動推薦演算法
論文名稱(外文):Improving Complete Cold-Start Recommendation via Content-based Preference Graph Convolution Networks
指導教授:蔡銘峰蔡銘峰引用關係
指導教授(外文):Tsai, ‪Ming-Feng
口試委員:王釧茹蘇家玉黃瀚萱
口試委員(外文):Wang, Chuan-JuSu, Chia-YuHuang, Hen-Hsen
口試日期:2022-10-21
學位類別:碩士
校院名稱:國立政治大學
系所名稱:資訊科學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2022
畢業學年度:111
語文別:中文
論文頁數:33
中文關鍵詞:推薦系統冷起動推薦圖學習表示法
外文關鍵詞:Graph RepresentationRecommender SystemCold-Start Recommendation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:38
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
傳統的混合推薦系統旨在結合協同過濾和內容過濾兩種方式進行推 薦,利用使用者喜好資訊和過去互動過的商品內容資訊來解決資料稀 疏性問題和冷啟動問題。但是,在現實世界中,經常因為產品的性質 讓使用者和產品的互動資料相當稀少或是缺少這些資料,從而導致了 完全冷啟動(Complete Cold Start, CCS)問題,如新聞推薦和新活動推 薦,這是傳統的混合模型無法解決的。
在本文中,我們提出了偏好內容卷積(Preference Content Convolu- tion, PCC)方法,這是一種基於圖卷積網絡(Graph Convolution Net- work, GCN)的圖學習表示方法,該方法可在接受缺失資料的前提下 同時抽取使用者對內容的喜好特徵並結合內容資訊,進而針對冷啟動 問題進行推薦。我們在現實世界中的線上售票服務資料集和圖書資料 集上進行的實驗驗證此方法,其性能優於其他傳統基於內容過濾的方 法和沒有卷積網路的混合模型,為基於卷積網路的模型指出了一個方 向。
Conventional hybrid recommender system aims to address the data spar- sity problem and the cold start problem by leveraging collaborative and content- based filtering, simultaneously leveraging the precious user preference infor- mation and staple item content information. However, in many real-world scenarios, such as news and new event recommendations, the nature of items dictates the complete lack of user-item interaction, leading to the complete cold start (CCS) problem, which traditional hybrid models cannot solve.
In this paper, we propose preference-content convolution (PCC), a con- volutional graph network (GCN) based embedding learning method which jointly captures item content information and user preference over item con- tent. The experiments conducted on the real-world online ticket vending service dataset and news recommendation dataset show that the proposed method significantly outperforms traditional content-based filtering methods and hybrid models without convolution, signifying a promising direction for using the convolution-based model in addressing the CCS problem.
Ch1 緒論 1
1.1 前言 1
1.2 研究目的 2

Ch 2 相關文獻探討 5
2.1 推薦系統(RecommenderSystem) 5
2.1.1 內容過濾(ContentFiltering) 5
2.1.2 協同過濾(CollaborativeFiltering) 6
2.2 冷啟動問題(ColdStartProblem) 9
2.3 圖學習表示法(GraphRepresentation) 10

Ch3 研究方法 12
3.1 問題定義 12
3.2 偏好內容圖卷積框架 13
3.2.1 建圖策略 13
3.2.2 偏好空間建構(Preference Space Construction) 15
3.2.3 內容空間建構(Content Space Construction) 16
3.2.4 混合空間建構(Hybrid Space Construction) 18

Ch4 實驗結果與討論 21
4.1 資料集 21
4.1.1 資料前處理 22
4.2 比較基準模型 22
4.3 實驗設定與評估標準 23
4.3.1 實驗設定 23
4.3.2 評估標準 23
4.4 實驗結果 25
4.4.1 完全冷啟動推薦 25
4.4.2 商品對商品推薦(Item to Item Recommendation) 26
4.5 實例分析 27

Ch5 結論 30
參考文獻 31
[1] A. Bordes, N. Usunier, A. Garcia-Duran, J. Weston, and O. Yakhnenko. Translating embeddings for modeling multi-relational data. Advances in neural information processing systems, 26, 2013.
[2] I. Cantador, A. Bellog ́ın, and D. Vallet. Content-based recommendation in social tagging systems. In Proceedings of the fourth ACM conference on Recommender systems, pages 237–240, 2010.
[3] C.-M. Chen, M.-F. Tsai, Y.-C. Lin, and Y.-H. Yang. Query-based music recommen- dations via preference embedding. In Proceedings of the 10th ACM Conference on Recommender Systems, pages 79–82, 2016.
[4] D. Cohen, M. Aharon, Y. Koren, O. Somekh, and R. Nissim. Expediting exploration by attribute-to-feature mapping for cold-start recommendations. In Proceedings of the Eleventh ACM Conference on Recommender Systems, pages 184–192, 2017.
[5] M. Elahi, F. Ricci, and N. Rubens. Active learning in collaborative filtering rec- ommender systems. In International Conference on Electronic Commerce and Web Technologies, pages 113–124. Springer, 2014.
[6] N. Golbandi, Y. Koren, and R. Lempel. Adaptive bootstrapping of recommender systems using decision trees. In Proceedings of the fourth ACM international con- ference on Web search and data mining, pages 595–604, 2011.
[7] J. Gope and S. K. Jain. A survey on solving cold start problem in recommender systems. In 2017 International Conference on Computing, Communication and Au- tomation (ICCCA), pages 133–138. IEEE, 2017.
[8] W. Hamilton, Z. Ying, and J. Leskovec. Inductive representation learning on large graphs. Advances in neural information processing systems, 30, 2017.
[9] Y. Juan, Y. Zhuang, W.-S. Chin, and C.-J. Lin. Field-aware factorization machines for ctr prediction. In Proceedings of the 10th ACM conference on recommender systems, pages 43–50, 2016.
[10] Y.Koren,R.Bell,andC.Volinsky.Matrixfactorizationtechniquesforrecommender systems. Computer, 42(8):30–37, 2009.
[11] M. Kula. Metadata embeddings for user and item cold-start recommendations. In T. Bogers and M. Koolen, editors, Proceedings of the 2nd Workshop on New Trends on Content-Based Recommender Systems co-located with 9th ACM Conference on Recommender Systems (RecSys 2015), Vienna, Austria, September 16-20, 2015., volume 1448 of CEUR Workshop Proceedings, pages 14–21. CEUR-WS.org, 2015.
[12] B. Lika, K. Kolomvatsos, and S. Hadjiefthymiades. Facing the cold start problem in recommender systems. Expert systems with applications, 41(4):2065–2073, 2014.
[13] P. Melville, R. J. Mooney, R. Nagarajan, et al. Content-boosted collaborative filter- ing for improved recommendations. Aaai/iaai, 23:187–192, 2002.
[14] R. Mihalcea and P. Tarau. Textrank: Bringing order into text. In Proceedings of the 2004 conference on empirical methods in natural language processing, pages 404–411, 2004.
[15] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word repre- sentations in vector space. arXiv preprint arXiv:1301.3781, 2013.
[16] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online learning of social repre- sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pages 701–710, 2014.
[17] S. Rendle, C. Freudenthaler, Z. Gantner, and L. Schmidt-Thieme. Bpr: Bayesian personalized ranking from implicit feedback. arXiv preprint arXiv:1205.2618, 2012.
[18] B. Sarwar, G. Karypis, J. Konstan, and J. Riedl. Item-based collaborative filtering recommendation algorithms. In Proceedings of the 10th international conference on World Wide Web, pages 285–295, 2001.
[19] M. Saveski and A. Mantrach. Item cold-start recommendations: learning local col- lective embeddings. In Proceedings of the 8th ACM Conference on Recommender systems, pages 89–96, 2014.
[20] B. Shapira, L. Rokach, and S. Freilikhman. Facebook single and cross domain data for recommendation systems. User Modeling and User-Adapted Interaction, 23(2):211–247, 2013.
[21] X. Su and T. M. Khoshgoftaar. A survey of collaborative filtering techniques. Ad- vances in artificial intelligence, 2009, 2009.
[22] M. Sun, F. Li, J. Lee, K. Zhou, G. Lebanon, and H. Zha. Learning multiple-question decision trees for cold-start recommendation. In Proceedings of the sixth ACM in- ternational conference on Web search and data mining, pages 445–454, 2013.
[23] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei. Line: Large-scale infor- mation network embedding. In Proceedings of the 24th international conference on world wide web, pages 1067–1077, 2015.
[24] H. Wang, M. Zhao, X. Xie, W. Li, and M. Guo. Knowledge graph convolutional net- works for recommender systems. In The world wide web conference, pages 3307– 3313, 2019.
[25] J. Wei, J. He, K. Chen, Y. Zhou, and Z. Tang. Collaborative filtering and deep learning based recommendation system for cold start items. Expert Systems with Applications, 69:29–39, 2017.
[26] K. Zhou, S.-H. Yang, and H. Zha. Functional matrix factorizations for cold-start recommendation. In Proceedings of the 34th international ACM SIGIR conference on Research and development in Information Retrieval, pages 315–324, 2011.
電子全文 電子全文(網際網路公開日期:20240217)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top