跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 02:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:張敬銘
研究生(外文):ZHANG, JING-MING
論文名稱:應用於第五代行動通訊VR眼鏡及抑制旁波瓣之毫米波陣列天線設計
論文名稱(外文):Design of VR Glasses Antenna and mm-Wave Array Antenna with Side-Lobe Level Suppression for 5G Communication
指導教授:陳華明陳華明引用關係林憶芳林憶芳引用關係
指導教授(外文):CHEN, HUA-MINGLIN, YI-FANG
口試委員:邱宗文陳振聲陳華明林憶芳
口試委員(外文):CHIU, TSUNG-WENCHEN, JIN-SENCHEN, HUA-MINGLIN, YI-FANG
口試日期:2023-07-21
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:光電工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:中文
論文頁數:81
中文關鍵詞:VR眼鏡天線毫米波陣列天線韋瓦第陣列天線MIMO天線設計仿生技術旁波瓣抑制
外文關鍵詞:VR glasses antennamillimeter-wave array antennaVivaldi array antennaMIMO antenna designbiomimetic technologyside lobe suppression
相關次數:
  • 被引用被引用:1
  • 點閱點閱:140
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
 本論文提出應用於第五代行動通訊的VR眼鏡天線與抑制旁波瓣的毫米波陣列天線,隨著科技的進步與行動通訊的發展,智慧眼鏡與毫米波的需求也逐漸增加,提出了一款應用於VR眼鏡的天線設計,並且探討如何抑制毫米波陣列天線的旁波瓣,眼鏡本體採3D列印製作而成。
第一款天線為具有毫米波VR眼鏡天線設計,涵蓋頻段Wi-Fi 6E、5G - FR1 n77/n78/n79頻段及5G FR2 n261頻段,在Sub – 6GHz以下頻段使用單及天線饋入耦合至金屬牆形成雙模態,在mmWave頻段使用1 x 4 Vivadi陣列天線,並結合T型功率分配器,最後加入SAR值模擬使VR眼鏡天線更貼近生活運用。
第2款天線以兩種不同型式設計仿生天線,以三階費氏陣列天線為例,探討此種天線擺放方式對於旁波瓣的抑制效果,再發展至四階、五階費氏陣列天線,驗證越多階層旁波瓣抑制的效果是否越好,最後以四種數量相同但不同排列方式,比較其差異性。

關鍵詞:VR眼鏡天線、毫米波陣列天線、韋瓦第陣列天線、MIMO天線設計、仿生技術、旁波瓣抑制 

This paper proposes antenna designs for VR glasses applied in fifth-generation mobile communications, along with millimeter-wave array antennas for side lobe suppression. With the advancement of technology and the development of mobile communications, the demand for smart glasses and millimeter-wave applications has increased. A antenna design for VR glasses is presented, and the suppression of side lobes in millimeter-wave array antennas is explored. The glasses body is manufactured using 3D printing technology.
The first antenna design covers the frequency bands of Wi-Fi 6E, 5G - FR1 (n77/n78/n79), and 5G FR2 261. It utilizes a single-feed coupling to a metallic wall to form a dual-mode configuration below the sub-6GHz frequency range. In the mmWave frequency range, a 1x4 Vivaldi array antenna is used, combined with a T-shaped power splitter. SAR simulations are also incorporated to enhance the applicability of the VR glasses antenna in daily life.
The second antenna design focuses on the biomimetic antennas using different configurations. Taking the third-order Fibonacci array antenna as an example, the effect of antenna placement on side lobe suppression is investigated. The study further expands to fourth-order and fifth-order Fibonacci array antennas to verify if higher-order configurations yield better side lobe suppression. Additionally, four different arrangements with equal antenna quantities are compared to examine their differences.

Keywords: VR glasses antenna, millimeter-wave array antenna, Vivaldi array antenna, MIMO antenna design, biomimetic technology, side lobe suppression.

摘要 I
ABSTRACT II
誌謝 III
目錄 IV
表目錄 V
圖目錄 VI
第一章 緒論 1
1.1 研究背景 1
1.2 研究目的 3
1.3 文獻導覽 3
1.4 論文架構 4
第二章 應用於第五代行動通訊之VR眼鏡天線設計 5
2.1 前言 5
2.2 天線原理與架構 5
2.3 天線實驗與量測結果 12
2.4 毫米波頻段實測結果 34
2.5 結論 41
第三章 應用於毫米波之費式序列陣列天線 42
3.1 前言 42
3.2 天線原理與架構 44
3.3 天線實驗結果 47
3.4 陣列天線結構比較 61
3.5 結論 67
第四章 結論與未來發展 68
參考文獻 70

[1]AR/VR於工廠之應用發展分析:https://mic.iii.org.tw/
[2]近在眼前的數位娛樂——智慧眼鏡的進化:https://pansci.asia/archives/361665
[3]推薦十大 PS VR 遊戲人氣排行榜:https://autos.yahoo.com.tw/
[4]VR療法首次納入保險!減痛、復健都能用的VR技術,有哪些商業機會?:https://futurecity.cw.com.tw/
[5]VR與AI打造最優良的語言學習:https://www.arplanet.com.tw/
[6]VR導入工安 桃機設「職安體驗館」:https://www.technice.com.tw/
[7]5G毫米波時代何時到來?:https://www.eettaiwan.com/
[8]毫米波創造5G網路無限想像:https://www.edntaiwan.com/
[9]X. Zhang, Y. Li, W. Wang, and W. Shen, “Ultra-wideband 8-port MIMO antenna array for 5G metal-frame smartphones,” IEEE Access, vol. 7, pp. 72273-72282, 2019.
[10]Yan. Yan. Wang, Yong. Ling. Ban, Zaiping. Nie, and Chow. Yen. Desmond. Sim, “Dual-Loop antenna for 4G LTE MIMO smart glasses applications, ” IEEE Antennas and Wireless Propagation Letters, vol. 18 no. 9, 2019.
[11]Yan. Yan. Wang, Yong. Ling. Ban, and Yanhui. Liu, “Sub-6GHz 4G/5G conformal glasses antennas, ” IEEE Access, vol. 7, 2019.
[12]S. Choi and J. Choi, “Miniaturized MIMO antenna with a high isolation for smart glasses,” IEEE-APS Topical Conference on Antennas and Propagation in Wireless Communications, 2017.
[13]G. Pan, Y. Li, Z. Zhang, and Z. Feng, “A compact wideband slot-loop hybrid antenna with a monopole feed,” IEEE Transactions on Antennas and Propagation, vol. 62, no. 7, pp. 3864-3868, 2014.
[14]莊英杰,應用於第五代通訊低特定電磁波能量吸收率智慧型眼鏡天線之設計,碩士論文,國立高雄科技大學光電工程研究所,高雄,2022。
[15]Xu. Li, Yong. Li, Jun. Tao. Huang, and Ou. Yang. Du, “A cross-slot loaded miniaturized UWB vivaldi dual-polarized antenna,” 2021 International Conference on Microwave and Millimeter Wave Technology (ICMMT), Nanjing, China, May 23-26, 2021.
[16]Jian. Ren, Miaomiao. Zuo, Bing. Zhang, Xiaoyu. Du, Zhe. Chen, Ying. Liu, and Ying. Zeng. Yin, “Large frequency ratio vivaldi antenna system with low-frequency gain enhancement utilizing dual-function taper slot,” IEEE Transactions on Antennas and Propagation, vol. 70, no. 6, pp. 4854-4859, 2021.
[17]Nurhayati. Nurhayati, Eko. Setijadi, Alexandre. M. De. Oliveira, Takeshi. Fukusako, Bagus. E. Sukoco, and Fitri. Adi. Iskandarianto, “Coplanar vivaldi antenna with koch fractal lens for L and S-band application,” 2021 3rd International Conference on Research and Academic Community Services (ICRACOS), Surabaya, Indonesia, October 09-10, 2021.
[18]楊哲愷,應用於第五代行動通訊穿戴裝置天線與毫米波相控陣列天線之設計,碩士論文,國立高雄科技大學光電工程研究所,高雄,2021。
[19]S. Zhu, H. Liu, Z. Chen, and P. Wen, “A compact gain-enhanced vivaldi antenna array with suppressed mutual coupling for 5G mmWave application, ” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 5, pp. 776-779, 2018.
[20]H. Liu, W. Yang, A. Zhang, S. Zhu, Z. Wang, and T. Huang, “A miniaturized gain-enhanced antipodal Vivaldi antenna and its array for 5G communication applications, ” IEEE Access, vol. 6, pp. 76282-76288, 2018.
[21]天線巴倫結構:https://blog.csdn.net/
[22]In. June. Hwang, ByungKuon. Ahn, Soo. Chang. Chae, Jong. Won. Yu, and Won. Woo. Lee, “Quasi-Yagi antenna array with modified folded dipole driver for mmWave 5G cellular devices, ” IEEE Antennas and Wireless Propagation Letters, vol. 18, no. 5, pp. 971-975, 2019.
[23]Shih. Chung. Tuan, “Side lobes suppressing technology for aperiodic millimeter wave array antenna,” 2019 Photonics & Electromagnetics Research Symposium - Fall (PIERS - Fall), Xiamen, China, December 17-20, 2019.
[24]Henry. Abu. Diawuo and Young. Bae. Jung, “Broadband proximity-coupled microstrip planar antenna array for 5G cellular applications,” IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 7, pp. 1286-1290, 2018.
[25]Rinkee. Chopra, Girish. Kumar, and Rahul. Lakhmani, “Corner fed microstrip antenna array with reduced cross polarization and side lobe level,” 2016 Asia-Pacific Microwave Conference (APMC), New Delhi, India, December 05-09, 2016.
[26]莊詠翔,應用於Sub-6GHz高增益複合式共振天線之基站設計,碩士論文,國立高雄科技大學光電工程研究所,高雄,2019。
[27]Samuel. B. Paiva, Valdemir. P. Silva. Neto, and Adaildo. Gomes. D'Assunção, “A new compact, stable, and dual-band active frequency selective surface with closely spaced resonances for wireless applications at 2.4 and 2.9 GHz,” IEEE Transactions on Electromagnetic Compatibility, vol. 62, no. 3, pp. 691-697, 2019.
[28]J. A. V. Delgado and C. A. V. Mera, “A bio-inspired patch antenna array using fibonacci sequences in trees [Education Column], ” IEEE Antennas and Propagation Magazine, vol. 55, no. 5, pp. 192-201, 2013.
[29]John. Wiley. & Sons, “Antenna Theory analysis and Design fourth edition,” Canada, Wiley, 2016.

電子全文 電子全文(網際網路公開日期:20280817)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top