跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/02/07 03:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮 明 新
研究生(外文):Nguyen Minh Tan
論文名稱:貼附於訊號吸收與反射面的微型超高頻射頻辨識標籤天線之研究
論文名稱(外文):The Study of Miniatured UHF RFID Tag Antennas Attached on Signal Absorption and Reflection Surfaces
指導教授:陳 華 明
指導教授(外文):Hua-Ming Chen
口試委員:沈昭元陳華明陳松琳林憶芳陳弘典陳振聲周良哲陳建宏
口試委員(外文):Chow Yen Desmond SimHua-Ming ChenSong-Lin ChenYi-Fang LinHorng-Dean ChenJin-Sen ChenZhou Liang ZheChien-Hung Chen
口試日期:2023-01-11
學位類別:博士
校院名稱:國立高雄科技大學
系所名稱:電子工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2023
畢業學年度:111
語文別:英文
論文頁數:140
中文關鍵詞:RFID
外文關鍵詞:RFID
相關次數:
  • 被引用被引用:0
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:33
  • 收藏至我的研究室書目清單書目收藏:0
對於 RFID 標籤天線應用,標籤的實現增益、輻射效率和共軛阻抗等質量特性對環境中材料的成分和特性(例如它們的電導率)非常敏感。 金屬表面可以將從閱讀器天線發射的電磁入射波轉換為 180 度異相的反射信號,反射信號與原始入射波之間的這種干擾會降低天線的輻射效率和實現的增益 . 此外,干擾會導致主要平行於導體表面的電流流動。 水和其他液體或人體對近場環境中標籤天線性能的影響較小,因為近場介質的較長工作波長較少被液體吸收。 相反,遠場RFID標籤的波長較短,很容易被液體吸收。 因此,實現的增益、輻射效率和讀取範圍將嚴重退化。 為了解決這些障礙,設計並製造了三種新型標籤天線。 第一個標籤天線是通過使用安裝在金屬平面上的小短路板配置的。 微型標籤由兩層組成,頂部的 C 形諧振器使用尺寸為 Tw 的 3 mm2 的小短路壁連接到底部的接地平面。 使用一塊尺寸為 30 毫米 x 30 毫米 x 2.6 毫米的軟泡沫支撐頂層和底層之間的間隙。 位於 C 形諧振器下臂上的兩個開口狹縫圍繞 Tn 尺寸為 2 mm2 的短路壁蝕刻。 C形貼片中心的縫隙和饋電環的尺寸分別為LS 0.2 mm2 和LC 0.5 mm2 ,它們都將用於控制天線的共軛阻抗。 為了進一步縮小標籤天線的尺寸,在第二個設計中對多槽天線結構的配置進行了建模和驗證。 這個設計包括
一個雙 I 形諧振器,帶有幾個 I 形槽和一個短接到小短路板的接地平面。 在雙 I 貼片和開放狹縫中間蝕刻閉合槽允許靈活調整頻率以匹配 RFID 芯片的共軛阻抗。 該結構具有 28.02 x 25.02 x 2.61 mm3 的薄型,標籤天線實現了 99.74% 的高功率傳輸係數,實現了 −2.3 dB 的增益,讀取範圍為 8.1 m 當標籤放置在尺寸為 250 x 250 mm2 的金屬表面的中心時。 第三種結構是本文中最重要的設計,因為標籤天線在相同配置下同時適用於反射和吸收表面,而標籤的性能在三種情況下(金屬,裝滿水的容器)變化很小 , 和人的手腕)。 偶極天線(尺寸,32 × 25 × 3.2 mm3)包括兩塊 PCB FR4 板(頂層和底層),介電常數為 4.4,並由軟泡沫基板 (H2 = 2 mm) 支撐。 上板為 1 mm 單面 FR4 基板,頂層中間有兩個相同大小的矩形貼片,中心條帶周圍對稱地刻有幾個 C 形諧振器,間隙為 0.4 mm 同一架飛機。 在矩形貼片和 C 形諧振器的每一端都插入了四個短路過孔(半徑 = 0.7 mm),以增加諧振電流路徑長度。
For the RFID tag antenna applications, the quality properties of the tag in the realized gain, radiation efficiency, and conjugate impedance are greatly sensitive to the composition and characteristics of materials in the environment, such as their conductivity. A metal surface can transform an electromagnetic incident wave transmitted from a reader antenna to reflective signals with a 180-degree out-of-phase, this interference between the reflective signals and the original incident wave can deteriorate the radiation efficiency and realized gain of the antenna. Additionally, the interference can cause a current flow that is predominantly parallel to the surface of a conductive. Water and other liquids, or the human body have less effect on the tag antenna performance in the near-field environment because the longer operational wavelengths of the near-field medium are less absorbed by liquids. On the contrary, the far-field RFID tag has a shorter wavelength and they are easily absorbed by liquids. Therefore, the realized gain, radiation efficiency, and read range will be seriously degraded. To solve these obstacles, the three new tag antennas were designed and fabricated. The first tag antenna was configured by using a small shorting plate mounted on a metallic plane. The miniaturized tag consists of two layers, the top C-shaped resonator is connected to the ground plane at the bottom using the small shorting wall with the size of Tw by 3 mm2. The gap between the top and bottom layers is supported utilizing a piece of soft foam with a dimension of 30 mm by 30 mm by 2.6 mm. Two open slits located on the lower arm of the C-shaped resonator are etching around the shorting wall with the dimension of Tn by 2 mm2. A slot and feeding loop in the center of the C-shaped patch has the dimension of LS by 0.2 mm2 and LC by 0.5 mm2, respectively, all of those will be employed to control the conjugate impedance of the antenna. To further miniature the dimension of a tag antenna, the configuration of the antenna structure with multi-slots was modeled and validated in the second design. This design consists of
a double I-shaped resonator with a couple of I-shaped slots and a ground plane shorted to a small shorting plate. Etching closed slots in the middle of the double of I–patch and open slits allowed the flexibility frequency adjusting to match the conjugate impedance of an RFID chip. The structure has a low profile of 28.02 by 25.02 by 2.61 mm3, and the tag antenna achieves a high power transmission coefficient of 99.74%, realized gain of −2.3 dB, and a read range of 8.1 m when the tag is placed on the center of a metal surface of size 250 by 250 mm2. The third structure is the most important design in this thesis because the tag antenna propers to both the reflection and absorption surfaces at the same time in the same configuration while the performance of the tag changes only minimally in three cases (metal, container of full water, and human wrist). The dipole antenna (dimensions, 32 × 25 × 3.2 mm3) includes two PCB FR4 boards (top and bottom layers) that have a dielectric constant of 4.4 and are supported by using a soft foam substrate (H2 = 2 mm). The upper plate is a 1-mm single-face of FR4 substrate with two same–size rectangular patches in the middle of the top layer and a couple of C-shaped resonators symmetrically around the center strips with a gap of 0.4 mm etched on the same plane. Four shorting vias (radius = 0.7 mm) have been inserted at every end of the rectangular patches and C-shaped resonators to increase the resonance current path length.

ABSTRACT
ACKNOWLEDGEMENT
LIST OF PUBLICATIONS
LIST OF CONTENTS
LIST OF TABLES
LIST OF FIGURES
CHAPTER
1 INTRODUCTION
1.1 Briefly about RFID system: Overview and State of The Art
1.2 Effect of environment on RFID tag operation
1.3 Design methods for miniaturized RFID tag antennas
1.4 Measurement method for RFID chip
1.5 Calculation method for the realized gain radiation patterns
1.6 Motivation and objectives

2 COMPACT SHORTED C-SHAPED PATCH ANTENNA FOR ULTRAHIGH FREQUENCY RADIO FREQUENCY IDENTIFICATION TAGS
MOUNTED ON A METALLIC PLATE
2.1 Antenna design and optimization
2.2 Design procedure and current analysis
2.3 Equivalent circuit model
2.4 Parameter study
2.5 Experiment and discussion

3 SHORTED PATCH ANTENNA WITH MULTI SLOTS FOR A UHF RFID TAG ATTACHED TO A METALLIC OBJECT
3.1 Antenna design
3.2 Input impdedance measurement of RFID chip
3.3 Design analysis and surface current distribution
3.4 Equivalent circuit model
3.5 Parameters evaluation
3.6 Experiment results and discussion

4 MINIATURE 3D-DIPOLE ANTENNA FOR UHF RFID TAG MOUNTED ON ABSORPTION AND REFLECTION SURFACES
4.1 Antenna design
4.2 Design procedure and current distribution of 3D dipole tag antenna
4.3 Equivalent circuit model
4.4 Parameter evaluation
4.5 Results and discussion

5 CONCLUSIONS AND FUTURE WORK
6 REFERENCES

[1]T. Björninen, L. Sydänheimo, L. Ukkonen, and Y. Rahmat-Samii, "Advances in antenna designs for UHF RFID tags mountable on conductive items," IEEE Antennas and Propagation Magazine, vol. 56, no. 1, pp. 79-103, 2014.
[2]G. Marrocco, "The art of UHF RFID antenna design: Impedance-matching and size-reduction techniques," IEEE antennas and propagation magazine, vol. 50, no. 1, pp. 66-79, 2008.
[3]R. Abdulghafor et al., "Recent advances in passive UHF-RFID tag antenna design for improved read range in product packaging applications: A comprehensive review," IEEE Access, vol. 9, pp. 63611-63635, 2021.
[4]Z. N. Chen, Antennas for portable devices. John Wiley & Sons, 2007.
[5]M. Bolic, D. Simplot-Ryl, and I. Stojmenovic, "RFID systems: research trends and challenges," 2010.
[6]D. Liao and K. Sarabandi, "Terminal-to-terminal hybrid full-wave simulation of low-profile, electrically-small, near-ground antennas," IEEE transactions on antennas and propagation, vol. 56, no. 3, pp. 806-814, 2008.
[7]J. Zhang and Y. Long, "A dual-layer broadband compact UHF RFID tag antenna for platform tolerant application," IEEE Transactions on Antennas and propagation, vol. 61, no. 9, pp. 4447-4455, 2013.
[8]C. Y. Chiu, K. M. Shum, and C. H. Chan, "A tunable via-patch loaded PIFA with size reduction," IEEE transactions on antennas and propagation, vol. 55, no. 1, pp. 65-71, 2007.
[9]Y. J. Zhang, D. Wang, and M. S. Tong, "An adjustable quarter-wavelength meandered dipole antenna with slotted ground for metallically and airily mounted RFID tag," IEEE Transactions on Antennas and Propagation, vol. 65, no. 6, pp. 2890-2898, 2017.
[10]W.-H. Ng, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "Compact planar inverted-S antenna with embedded tuning arm for on-metal UHF RFID tag design," IEEE Transactions on Antennas and Propagation, vol. 67, no. 6, pp. 4247-4252, 2019.
[11]K. Thirappa, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "Compact folded-patch with orthogonal tuning slots for on-metal tag design," IEEE Transactions on Antennas and Propagation, vol. 67, no. 9, pp. 5833-5842, 2019.
[12]H. Li, J. Zhu, and Y. Yu, "Compact single-layer RFID tag antenna tolerant to background materials," IEEE Access, vol. 5, pp. 21070-21079, 2017.
[13]S.-K. Kuo and L.-G. Liao, "An analytic model for impedance calculation of an RFID metal tag," IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 603-607, 2010.
[14]F.-L. Bong, E.-H. Lim, and F.-L. Lo, "Compact folded dipole with embedded matching loop for universal tag applications," IEEE Transactions on Antennas and Propagation, vol. 65, no. 5, pp. 2173-2181, 2017.
[15]Y.-F. Lin, M.-J. Chang, H.-M. Chen, and B.-Y. Lai, "Gain enhancement of ground radiation antenna for RFID tag mounted on metallic plane," IEEE Transactions on Antennas and Propagation, vol. 64, no. 4, pp. 1193-1200, 2016.
[16]J. Zhang and Y. Long, "A miniaturized via-patch loaded dual-layer RFID tag antenna for metallic object applications," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1184-1187, 2013.
[17]Y.-H. Lee, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "Compact folded C-shaped antenna for metal-mountable UHF RFID applications," IEEE Transactions on Antennas and Propagation, vol. 67, no. 2, pp. 765-773, 2018.
[18]A. P. Sohrab, Y. Huang, M. Hussein, M. Kod, and P. Carter, "A UHF RFID tag with improved performance on liquid bottles," IEEE Antennas and Wireless Propagation Letters, vol. 15, pp. 1673-1676, 2016.
[19]N. M. Tan, H.-M. Chen, and C.-H. Chen, "An inverted-F antenna for RFID tag mounted on a full container of liquid," in 2020 IEEE International Symposium on Antennas and Propagation and North American Radio Science Meeting, 2020, pp. 1523-1524: IEEE.
[20]G. Marrocco, "RFID antennas for the UHF remote monitoring of human subjects," IEEE transactions on antennas and propagation, vol. 55, no. 6, pp. 1862-1870, 2007.
[21]D. Kim and J. Yeo, "Dual-band long-range passive RFID tag antenna using an AMC ground plane," IEEE Transactions on Antennas and Propagation, vol. 60, no. 6, pp. 2620-2626, 2012.
[22]R. C. Hadarig, M. E. de Cos, and F. Las-Heras, "UHF dipole-AMC combination for RFID applications," IEEE Antennas and Wireless Propagation Letters, vol. 12, pp. 1041-1044, 2013.
[23]N. Ripin, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "Miniature folded dipolar patch with embedded AMC for metal mountable tag design," IEEE Transactions on Antennas and Propagation, vol. 68, no. 5, pp. 3525-3533, 2020.
[24]I. Y. Park and D. Kim, "Artificial magnetic conductor loaded long‐range passive RFID tag antenna mountable on metallic objects," Electronics letters, vol. 50, no. 5, pp. 335-336, 2014.
[25]D. Kim and J. Yeo, "Low-profile RFID tag antenna using compact AMC substrate for metallic objects," IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 718-720, 2008.
[26]D. Kim, J. Yeo, and J. Ick Choi, "Low‐profile platform‐tolerant RFID tag with artificial magnetic conductor (AMC)," Microwave and Optical Technology Letters, vol. 50, no. 9, pp. 2292-2294, 2008.
[27]L. Benmessaoud, T.-P. Vuong, M. C. Yagoub, and R. Touhami, "A novel 3-D tag with improved read range for UHF RFID localization applications," IEEE Antennas and Wireless Propagation Letters, vol. 16, pp. 161-164, 2016.
[28]A. Galehdar, D. V. Thiel, and S. G. O'Keefe, "Design methods for 3D RFID antennas located on a conducting ground plane," IEEE transactions on antennas and propagation, vol. 57, no. 2, pp. 339-346, 2009.
[29]K.-H. Lin, S.-L. Chen, and R. Mittra, "A looped-bowtie RFID tag antenna design for metallic objects," IEEE Transactions on Antennas and Propagation, vol. 61, no. 2, pp. 499-505, 2012.
[30]S.-L. Chen, "A miniature RFID tag antenna design for metallic objects application," IEEE Antennas and Wireless Propagation Letters, vol. 8, pp. 1043-1045, 2009.
[31]J. Zhang and Y. Long, "A novel metal-mountable electrically small antenna for RFID tag applications with practical guidelines for the antenna design," IEEE Transactions on Antennas and Propagation, vol. 62, no. 11, pp. 5820-5829, 2014.
[32]S.-L. Chen and K.-H. Lin, "A slim RFID tag antenna design for metallic object applications," IEEE Antennas and Wireless Propagation Letters, vol. 7, pp. 729-732, 2008.
[33]W.-H. Ng, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "Folded patch antenna with tunable inductive slots and stubs for UHF tag design," IEEE Transactions on Antennas and Propagation, vol. 66, no. 6, pp. 2799-2806, 2018.
[34]K. Jaakkola, "Small on-metal UHF RFID transponder with long read range," IEEE Transactions on Antennas and Propagation, vol. 64, no. 11, pp. 4859-4867, 2016.
[35]C.-W. Moh, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "Miniature coplanar-fed folded patch for metal mountable UHF RFID tag," IEEE Transactions on Antennas and Propagation, vol. 66, no. 5, pp. 2245-2253, 2018.
[36]S.-R. Lee, W.-H. Ng, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "Compact magnetic loop antenna for omnidirectional on-metal UHF tag design," IEEE Transactions on Antennas and Propagation, vol. 68, no. 2, pp. 765-772, 2019.
[37]Y.-H. Lee, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "Loop-fed planar inverted-L antennas (PILAs) for omnidirectional UHF on-metal tag design," IEEE Transactions on Antennas and Propagation, vol. 68, no. 8, pp. 5864-5871, 2020.
[38]F.-L. Bong, E.-H. Lim, and F.-L. Lo, "Miniaturized dipolar patch antenna with narrow meandered slotline for UHF tag," IEEE Transactions on Antennas and Propagation, vol. 65, no. 9, pp. 4435-4442, 2017.
[39]S.-R. Lee, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "Slotted folded patch antenna with double-T-slots for platform-insensitive UHF tag design," IEEE Transactions on Antennas and Propagation, vol. 67, no. 1, pp. 670-675, 2018.
[40]Y.-H. Lee, C.-W. Moh, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "Miniature folded patch with differential coplanar feedline for metal mountable UHF RFID tag," IEEE Journal of Radio Frequency Identification, vol. 4, no. 2, pp. 93-100, 2019.
[41]S.-R. Lee, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "High-efficient compact folded-patch antenna fed by T-shaped L-probe for on-metal UHF RFID tag design," IEEE Transactions on Antennas and Propagation, vol. 68, no. 1, pp. 152-160, 2019.
[42]M. A. Ziai and J. C. Batchelor, "Temporary on-skin passive UHF RFID transfer tag," IEEE transactions on antennas and propagation, vol. 59, no. 10, pp. 3565-3571, 2011.
[43]S. Amendola, R. Lodato, S. Manzari, C. Occhiuzzi, and G. Marrocco, "RFID technology for IoT-based personal healthcare in smart spaces," IEEE Internet of things journal, vol. 1, no. 2, pp. 144-152, 2014.
[44]D. M. Dobkin and S. M. Weigand, "Environmental effects on RFID tag antennas," in IEEE MTT-S International Microwave Symposium Digest, 2005., 2005, pp. 135-138: IEEE.
[45]R. Quiroz, T. Alves, B. Poussot, and J.-M. Laheurte, "Combined RFID tag antenna for recipients containing liquids," in 2012 IEEE International Conference on RFID-Technologies and Applications (RFID-TA), 2012, pp. 101-106: IEEE.
[46]S. R. Aroor and D. D. Deavours, "Evaluation of the state of passive UHF RFID: An experimental approach," IEEE Systems Journal, vol. 1, no. 2, pp. 168-176, 2007.
[47]W.-H. Ng, E.-H. Lim, F.-L. Bong, and B.-K. Chung, "E-shaped folded-patch antenna with multiple tuning parameters for on-metal UHF RFID tag," IEEE Transactions on Antennas and Propagation, vol. 67, no. 1, pp. 56-64, 2018.
[48]H.-D. Chen and Y.-H. Tsao, "Low-profile meandered patch antennas for RFID tags mountable on metallic objects," IEEE Antennas and Wireless Propagation Letters, vol. 9, pp. 118-121, 2010.
[49]T. Bjorninen, A. Z. Elsherbeni, and L. Ukkonen, "Low-profile conformal UHF RFID tag antenna for integration with water bottles," IEEE Antennas and Wireless Propagation Letters, vol. 10, pp. 1147-1150, 2011.
[50]A. Rida and M. Tentzeris, "Design and Development of RFID and RFID-Enabled Sensors on Flexible Low Cost Substrates (Synthesis Lectures on Rf Microwaves)," 2009.
[51]S. Sarma, "RFID technology and its applications," RFID Technology and Applications, p. 16, 2008.
[52]K. S. Rao, P. V. Nikitin, and S. F. Lam, "Antenna design for UHF RFID tags: A review and a practical application," IEEE Transactions on antennas and propagation, vol. 53, no. 12, pp. 3870-3876, 2005.
[53]Available at: www.nxp.com/docs/en/data-sheet/SL3S1205-15-DS.pdf
[54]H. Chen, S. Yeh, Y. Lin, S. Pan, and S. Chang, "High chip reactance matching for ultra-high-frequency radio frequency identification tag antenna design," IET microwaves, antennas & propagation, vol. 6, no. 5, pp. 577-582, 2012.
[55]D. Dobkin, The RF in RFID: UHF RFID in practice. Newnes, 2012.
[56]Available: https://www.datasheets.com/en/search?q=FR4%2520PCB
[57]Available: www.laird.com/sites/default/files/ds-eccostock-pp.pdf
[58]A. Ghiotto, S. Cantalice, T.-P. Vuong, A. Pouzin, G. Fontgalland, and S. Tedjini, "Miniaturized patch antenna for the radio frequency identification of metallic objects," in 2008 IEEE MTT-S International Microwave Symposium Digest, 2008, pp. 583-586: IEEE.
[59]A. Ria, A. Michel, R. K. Singh, V. Franchina, P. Bruschi, and P. Nepa, "Performance analysis of a compact UHF RFID ceramic tag in high-temperature environments," IEEE Journal of Radio Frequency Identification, vol. 4, no. 4, pp. 461-467, 2020.
[60]C. Pfeiffer, "Fundamental efficiency limits for small metallic antennas," IEEE Transactions on Antennas and Propagation, vol. 65, no. 4, pp. 1642-1650, 2017.
[61]Y.-F. Lin, M.-J. Chang, H.-M. Chen, and S.-T. Huang, "Theoretical study of ground radiation tag antenna with Tunable open-slot exciter," International Journal of Microwave and Wireless Technologies, vol. 9, no. 4, pp. 945-952, 2017.
[62]P. V. Nikitin and K. Rao, "Gain measurement of antennas using RFID," in 2011 IEEE International Symposium on Antennas and Propagation (APSURSI), 2011, pp. 1012-1015: IEEE.
[63]F.-L. Bong, E.-H. Lim, and F.-L. Lo, "Flexible folded-patch antenna with serrated edges for metal-mountable UHF RFID tag," IEEE Transactions on Antennas and Propagation, vol. 65, no. 2, pp. 873-877, 2016.
[64]F. W. Grover, Inductance calculations: working formulas and tables. Courier Corporation, 2004.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top