跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.170) 您好!臺灣時間:2024/12/03 12:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張家祥
研究生(外文):ZHANG, JIA-XIANG
論文名稱:專用於鋰離子電池之智慧化充電系統
論文名稱(外文):Intelligent Charging System Dedicated to Li-ion Batteries
指導教授:陳瓊興陳瓊興引用關係
指導教授(外文):CHEN, CHIUNG-HSING
口試委員:陳瓊興蘇德仁劉建源江中熈
口試委員(外文):CHEN, CHIUNG-HSINGSU, TE-JENLIU, CHIEN-YUANCHIANG, CHUNG-SHI
口試日期:2023-06-13
學位類別:碩士
校院名稱:國立高雄科技大學
系所名稱:電訊工程系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2024
畢業學年度:112
語文別:中文
論文頁數:63
中文關鍵詞:高電壓低電流窗口型比較器電池溫度最大溫升值充電效能和安全性
外文關鍵詞:window comparatorhigh voltage low currentbattery temperaturemaximum temperature risecharging efficiency and safety
相關次數:
  • 被引用被引用:0
  • 點閱點閱:79
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
本研究旨在探討在高電壓低電流充電下,使用窗口型比較器和非窗口型比較器的效果,以及與傳統的階梯式穩定電流轉換穩定電壓方式和脈衝充電法的比較。使用窗口型比較器可以縮短充電時間,同時避免充電過程中電池溫度過高的問題。本研究實驗發現在傳統的定電壓與定電流充電模式下,增加穩定電流階段的充電速度可以縮短充電時間,但也會增加充電過程中的最大溫升值。相比於傳統的階梯式定電壓與定電流充電模式,智慧型高壓低流充電模式和階梯式脈衝定電壓與定電流充電模式下,增加充電時間可以顯著降低電池充電過程中的溫升現象,進而提高充電效能和安全性。
The objective of this paper is to investigate the effect of using window comparators and non-window comparators in the high voltage low current charging mode. Furthermore, a comparative analysis shall be conducted between these methods and traditional multi-step constant current to constant voltage (CC-CV) charging mode and pulse charging mode. Using a window comparator can shorten the charging time while avoiding the problem of excessive battery temperature during charging. This paper found that in the traditional CC-CV charging mode, increasing the charging speed in the steady current stage can shorten the charging time, but it will also increase the maximum temperature rise during the charging process. Compared with the traditional multi-step CC-CV charging mode, the intelligent high voltage low current charging mode and the multi-step pulse CC-CV charging mode can significantly reduce the temperature rise during charging. By doing so, they can enhance both charging efficiency and safety while concurrently extending the duration of the charging process.
中文摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
第一章 緒論 1
1.1前言 1
1.2研究動機 1
1.3文獻回顧 2
1.4論文架構 11
第二章 鋰電池介紹 12
2.1 18650型鋰電池構造 12
2.1.1正極 12
2.1.2負極 14
2.1.3隔離膜 14
2.1.4鈍化膜 14
2.1.5電解液 15
2.1.6鋰離子外殼和蓋板 16
2.2工作原理 17
2.3常見充電方法與技術 19
2.3.1定電壓充電法 20
2.3.2定電流充電法 21
2.3.3二階段定電流定電壓充電法 22
2.3.4階梯狀定電流轉定電壓充電法 24
2.3.5脈衝式充電法 25
2.3.6脈衝式定電流轉定電壓充電法 26
2.3.7階梯狀脈衝式定電流轉定電壓充電法 27
2.3.8智慧式脈衝式充電法 29
第三章 窗口型比較器與非窗口型比較器介紹 31
3.1 VREF非窗口型比較器 31
3.2窗口型比較器 33
第四章 研究方法與電路設計 36
4.1示波器儀器工具 39
4.2資料擷取卡 40
4.3溫度感測器 41
第五章 實驗結果 43
第六章 結論與未來展望 47

[1]KAI LIU, YAYUAN LIU, DINGCHANG LIN, ALLEN PEI, and YI CUI. Materials for lithium-ion battery safety.22 Jun 2018.Vol 4, Issue 6.DOI: 10.1126/sciadv.aas9820.
[2]Shuai Ma, Modi Jiang, Peng Tao, Chengyi Song, Jianbo Wu, Jun Wang, Tao Deng, and Wen Shang. Temperature effect and thermal impact in lithium-ion batteries. A review. Record 2 January 2019.Volume 28, Issue 6, December 2018, Pages 653-666.
[3]Liwen Ji, Zhan Lin, Mataz Alcoutlabia, and Xiangwu Zhang. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. 19 Apr 2011.Energy Environ. Sci., 2011,4, 2682-2699.
[4]Xin Lai, Jian Yao, Changyong Jin, Xuning Feng, Huaibin Wang, Chengshan Xu, and Yuejiu Zheng. A Review of Lithium-Ion Battery Failure Hazards: Test Standards, Accident Analysis, and Safety Suggestions. 20 November 2022. Batteries 2022, 8(11), 248.
[5]Jian Hu, Tong Liu, Xishi Wang, Zhigang Wang, and Liusuo Wu. Investigation on thermal runaway of 18,650 lithium ion battery under thermal abuse coupled with charging. J. Energy Storage 2022, 51, 104482.
[6]George Fernandez Savari, M. Jagabar Sathik, L. Anantha Raman, Adel El-Shahat d, Hany M. Hasanien, Dhafer Almakhles, Shady H.E. Abdel Aleem, and Ahmed I. Omar. Assessment of charging technologies, infrastructure and charging station recommendation schemes of electric vehicles: A review. Volume 14, Issue 4, 5 April 2023, 101938.
[7]Md Ahsanul Hoque Rafi; and Jennifer Bauman. A Comprehensive Review of DC Fast-Charging Stations With Energy Storage: Architectures, Power Converters, and Analysis. 11 August 2020. Volume: 7, Issue: 2, June 2021. Pages. 345-368.
[8]Muhammad Shahid Mastoi, Shenxian Zhuang, Hafiz Mudassir Munir, Malik Haris, Mannan Hassan, Muhammad Usman, Syed Sabir Hussain Bukhari b, and Jong-Suk Ro. An in-depth analysis of electric vehicle charging station infrastructure, policy implications, and future trends. Volume 8, November 2022, Pages 11504-11529.
[9]Yang Gao, Caiping Zhang, Qiujiang Liu, Yan Jiang, Weiqiang Ma, and Yong-Peng Mu. An optimal charging strategy of lithium-ion batteries based on polarization and temperature rise. Published 3 November 2014.Engineering, Physics2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific).
[10]Zuolu Wang, Guojin Feng, Dong Zhen, Fengshou Gu, and Andrew Ball. A review on online state of charge and state of health estimation for lithium-ion batteries in electric vehicles. Volume 7, November 2021, Pages 5141-5161.
[11]Qian Lin, Jun Wang, Rui Xiong, Weixiang Shen, and Hongwen He. a Towards a smarter battery management system: A critical review on optimal charging methods of lithium ion batteries. Volume 183, 15 September 2019, Pages 220-234.
[12]A. Pearse, T. Schmitt, Emily Sahadeo, D. Stewart, A. Kozen, K. Gerasopoulos, A. Talin, S. B. Lee, G. Rubloff, K. Gregorczyk. Three-Dimensional Solid-State Lithium-Ion Batteries Fabricated by Conformal Vapor-Phase Chemistry. ACS Nano 2018, 12, 5, 4286–4294. 
[13]Muhammad Shahzad Nazir, Zhang Chu, Ahmad N. Abdalla, Hong Ki An, Sayed M. Eldin, Ahmed Sayed M. Metwally, Patrizia Bocchetta, and Muhammad Sufyan Javed. Study of an Optimized Micro-Grid’s Operation with Electrical Vehicle-Based Hybridized Sustainable Algorithms. Sustainability 2022, 14(23), 16172.
[14]Yipei Wang, Ancheng Liu, Yaochen Zhu, Hailong Zhang, Yafei Chen, and Sung-Jun Park. An Adaptive Fast Charging Strategy Considering the Variation of DC Internal Resistance. 21 December 2022. Pages.4464-4474.
[15]Guangwei Chen, Zhitao Liu, and Hongye Su An. Optimal Fast-Charging Strategy for Lithium-Ion Batteries via an Electrochemical–Thermal Model withIntercalation-Induced Stresses and Film Growth. Energies 2020, 13(9), 2388.
[16]Shichun Yang, Sida Zhou, Yang Hua, Xinan Zhou, Xinhua Liu, Yuwei Pan, Heping Ling, and Billy Wu. A parameter adaptive method for state of charge estimation of lithium-ion batteries with an improved extended Kalman filter. Scientific Reports volume 11, Article number: 5805.
[17]郭庭淇,2022,鋰電池模組之熱傳分析研究,國立中山大學,碩士論文。
[18]王昱盛,2020,製備與鑑定鋰離子電池正極材料磷酸鐵鋰之近期發展,國立嘉義大學,碩士論文。
[19]黃昱叡、黃俊翰、鄭尹瑋、劉全璞,2019,鋰離子電池負極材料,科學發展 2019年12月,第564期。
[20]林士人,2007,鋰電池電量模擬平台之研究,國立交通大學,碩士論文。
[21]何冠廷、陳弘源、陳燦耀、方冠榮、張家欽,2019,儲能發展的勁旅-鋰離子電池,科學發展 2019年5月,第557期。
[22]張裕民,劉世福,陳翰儀,2020,實驗室級鋰離子電池組裝,國立清華大學,化工2020年第4期第69卷。
[23]黃可龍,王兆翔,劉素琴,,鋰離子電池原理與技術,2010,五南出版社,出版日期:2010年5月25日。
[24]Xiong, R., Li, X., He, H., Luo, L., Cheng, S., and Zhang, X. "A Novel Dynamic Current Control Strategy for Lithium-Ion Battery Charging. IEEE Transactions on Power Electronics, 31(11), 7672-7683.
[25]Zhang, X., Xiong, R., Luo, L., Cheng, S., Li, S., and Li, X. "A Novel Current-Voltage Hybrid Control Strategy for Lithium-Ion Battery Fast Charging Considering Temperature Rise. IEEE Access, 8, 206571-206580.
[26]Zhang, Y., Zhao, Z., Yao, Y., and Wang, W. An Improved Constant Voltage Charging Strategy for Lithium-Ion Batteries Based on Voltage Regulation and Charge Time Optimization. Energies, 12(22), 4295.
[27]Wang, K., Jiang, J., Han, Y., and Lu, L. Voltage Control and Transition Strategy for Constant Voltage Charging of Lithium-Ion Batteries. IEEE Transactions on Industrial Electronics, 65(1), 821-829.
[28]Wang, Z., Zhao, Y., Yu, L., Zhang, X., and Sun, C. An Intelligent Constant Current Charging Strategy for Lithium-Ion Batteries Based on Improved Grey Wolf Optimization Algorithm. Energies, 13(2), 398.
[29]Y. Zhang, J. Wang, J. Sun, and Y. Han, A Novel Constant Current Charging Method for Lithium-Ion Batteries Based on Intelligent Control, Energies, vol. 11, no. 3, p. 560, 2018.
[30]Wang, Z., Zhang, X., Sun, C., and Jiang, J. A Two-Stage Constant Current/Constant Voltage Charging Method for Lithium-Ion Batteries. Energies, 9(2), 92.
[31]Li, H., Wei, X., Zhang, X., Li, B., and Hu, L. Stepwise Constant Current Charging Method for Lithium-Ion Batteries with Intelligent Capacity Estimation. Energies, 10(11), 1801.
[32]Cai, X., Huang, X., Zhang, J., Zhang, S., and Luo, G. A Novel Pulsed Charging Strategy for Lithium Iron Phosphate Batteries Based on State of Charge Estimation. IEEE Access, 8, 30087-30095.
[33]Fan, Q., Li, Y., Xu, W., Li, G., and Li, J. A Pulsed Constant Current-Constant Voltage Charging Method for Lithium-Ion Batteries Based on a State of Charge Estimation. Journal of Power Sources, 332, 345-352.
[34]陳智聖,2009,固定效率追蹤達到快速充電目的之演算法,國立交通大學,碩士論文。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top