跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 03:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林琮閔
研究生(外文):Lin,cong-min
論文名稱:恆溫恆濕空調系統建模及象限控制法則探討
論文名稱(外文):Quadrant Control Strategy and Establishing for Modeling a Constant-Temperature-Humidity System
指導教授:李靖男李靖男引用關係
指導教授(外文):Lee jing-nang
學位類別:碩士
校院名稱:國立勤益科技大學
系所名稱:冷凍空調系
學門:工程學門
學類:其他工程學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:79
中文關鍵詞:恆溫恆濕空調系統MATLAB象限控制法則
外文關鍵詞:Air-conditioning system for controlled temperature and humidityMATLABQuadrant control strategy
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:52
  • 收藏至我的研究室書目清單書目收藏:0
本文完成恆溫恆濕空調系統熱模型建模,建構恆溫恆濕空調系統結合空調區間之溫濕度的模型。同時,提出「象限控制法則」的控制策略,主要係以風量、加濕量及加熱量等參數調整,以獲得空調區間的恆溫恆濕的控制。最後,使用 MATLAB 應用程式模擬恆溫恆濕空調系統的動態分析,獲得文獻資料的佐證,並以PID 控制與象限控制法則進行穩定性及收斂性的分析及比較。
結果顯示,象限控制法則不論在穩定時間、最大超越量以及穩定誤差的表現上均較PID 控制為佳。這可由在亞熱帶海島型氣候、冬季海島型氣候、低溫乾燥型氣候及沙漠氣候的環境中,PID 控制穩定誤差有±0.1℃的震盪,同時最大超越量隨環境條件不同而異,至於本文之象限控制法則能快速且僅具些微超越量的情形下達到恆溫恆濕的狀
態,並且無擾動現象。

This purpose of this study is to model constant-temperature-constant-humidity air condition system and a novel controller strategy, Quadrant Control Strategy (QCS), is
applied for controlling the temperature-humidity state within the cooling space by modifying parameters of air flow, humidification, and heating. Finally, the comparison between PID and QCS methods is processed by both MATLAB simulations and literature verification for stability and astringency.

The comparison result shows the QCS provides higher performance than PID in settling time, overshoot and steady-state error. The PID simulation results a ± 0.1 ℃ error in predefined environments, such like subtropical island climate, winter island climate, low temperature climate and dry desert climate, while the QCS method handling the constant-temperature-humidity rapidly with a tiny overshoot and no disturbance.
摘 要 ...................................... i
誌 謝 .................................... iii
目 錄 ..................................... iv
表目錄 .................................... ix
第一章 緒論 ................................ 1
1.1 前言 .................................. 1
1.2 文獻回顧 ............................... 3
1.3 研究目的 ............................... 6
1.4 研究內容 ............................... 7
第二章 恆溫恆濕空調系統熱系統建模分析 ......... 9
2.1 恆溫恆濕空調系統概述 .................... 9
2.2 恆溫恆濕空調系統熱系統建模 .............. 10
第三章 象限控制法則與驗證 ................... 21
3.1 空調區間動態模型建構測試 ................ 21
3.2 恆溫恆濕空調系統動態模型建構與驗證 ....... 28
3.3 象限控制法則探討 ....................... 33
第四章 結果與討論 .......................... 45
4.1 亞熱帶海島型氣候恆溫恆濕空調系統探討 ...... 45
4.2 冬季亞熱帶海島型氣候對恆溫恆濕空調系統的影響 ..... 49
4.3 低溫乾燥型氣候在恆溫恆濕空調系統探討 .......... 53
4.4 高溫低濕型熱帶沙漠氣候對恆溫恆濕空調系統的影響 ....57
第五章 結論與建議 .......................... 61
5.1 結論 ................................. 61
5.2 建議 ................................. 61
參考文獻 .................................. 63
符號說明 .................................. 67
[1] P. Riederer, D. Marchio, J. C. Visier, A. Husaunndee, and R. Lahrech,
"Room thermal modelling adapted to the test of HVAC control systems,"
Building and Environment, vol. 37, p. 13, 2002.
[2] Y. Yao, Z. Lian, and Z. Hou, "Thermal analysis of cooling coils based on a
dynamic model," Applied Thermal Engineering, vol. 24, pp. 1037-1050,
2004.
[3] B. Tashtoush, M. Molhim, and M. Al-Rousan, "Dynamic model of an HVAC
system for control analysis," Energy, vol. 30, pp. 1729-1745, 2005.
[4] R. M. Barbosa and N. Mendes, "Combined simulation of central HVAC
systems with a whole-building hygrothermal model," Energy and Buildings,
vol. 40, pp. 276-288, 2008.
[5] S. Soyguder and H. Alli, "Predicting of fan speed for energy saving in
HVAC system based on adaptive network based fuzzy inference system,"
Expert Systems with Applications, vol. 36, pp. 8631-8638, 2009.
[6] S. Soyguder, M. Karakose, and H. Alli, "Design and simulation of
self-tuning PID-type fuzzy adaptive control for an expert HVAC system,"
Expert Systems with Applications, vol. 36, pp. 4566-4573, 2009.
[7] G. Platt, J. Li, R. Li, G. Poulton, G. James, and J. Wall, "Adaptive HVAC
zone modeling for sustainable buildings," Energy and Buildings, vol. 42,
pp. 412-421, 2010.
[8] J.M. Tsao, S.C. Hu, T. Xu, and D. Y. L. Chan, "Capturing energy-saving
opportunities in make-up air systems for cleanrooms of high-technology
fabrication plant in subtropical climate," Energy and Buildings, vol. 42, pp.
2005-2013, 2010.
[9] J. Rehrl and M. Horn, "Temperature Control for HVAC Systems based on
Exact Linearization and Model Predictive Control," IEEE International
Conference on Control Applications, 2011.
[10] C. W. Park, K. Y. Yoon, Y. D. Kim, J. H. Park, and J. Hwang, "Effects of
condensational growth on culturability of airborne bacteria: Implications for
sampling and control of bioaerosols," Journal of Aerosol Science, vol. 42,
pp. 213-223, 2011.
[11] C.H. Liang, L.Z. Zhang, and L.X. Pei, "Performance analysis of a direct
expansion air dehumidification system combined with membrane-based
64
total heat recovery," Energy, vol. 35, pp. 3891-3901, 2010.
[12] A. Kan and H. Houde, "Study on the Fuzzy control Technology of Marine
Air-conditioning System," IEEE 2nd Conference on Environmental
Science and Information Application Technology, 2010.
[13] M. Mossolly, K. Ghali, and N. Ghaddar, "Optimal control strategy for a
multi-zone air conditioning system using a genetic algorithm," Energy, vol.
34, pp. 58-66, 2009.
[14] Z. Li and S. Deng, "A DDC-based capacity controller of a direct expansion
(DX) air conditioning (A/C) unit for simultaneous indoor air temperature
and humidity control – Part II: Further development of the controller to
improve control sensitivity," International Journal of Refrigeration, vol. 30,
pp. 124-133, 2007.
[15] Z. Li and S. Deng, "A DDC-based capacity controller of a direct expansion
(DX) air conditioning (A/C) unit for simultaneous indoor air temperature
and humidity control – Part I: Control algorithms and preliminary
controllability tests," International Journal of Refrigeration, vol. 30, pp.
113-123, 2007.
[16] S. Delfani, H. Pasdarshahri, and M. Karami, "Experimental investigation of
dehumidification process in cooling coil by utilizing air-to-air heat
exchanger in humid climate of Iran," Energy and Buildings, vol. 42, pp.
822-827, 2010.
[17] X. Yu, J. Wen, and T. F. Smith, "A model for the dynamic response of a
cooling coil," Energy and Buildings, vol. 37, pp. 1278-1289, 2005.
[18] S. C. Sekhar, "Space temperature difference, cooling coil and fan—energy
and indoor air quality issues revisited," Energy and Buildings, vol. 37, pp.
49-54, 2005.
[19] Maxwell GM, Shapiro HN, and W. DG., "Dynamics and Control Chilled
Water Coil," ASHRAE Trans, vol. 95 part1, 1989.
[20] A.H. Elmahdy and M. GP., "A simple model for cooling and dehumdifying
coils for use in calculating energy requirements for buikdings," ASHRAE
Trans, vol. 83 Part 2, 1977.
[21] N. F. Diaz, J. Lebrun, and J. Hannay, "Thermal Model and Experimental
Validation of Humidifier Systems as Commissioning Tools in HVAC
Systems," HVAC&;R Research, vol. 15, pp. 1045-1063, 2009.
[22] Y. A. Cengel and M. A. Boles, Thermodynamics an engineering approach,
6th ed. New York: Hc Graw Hill, 2006.
65
[23] T. Salsbury and R. Diamond, "Performance validation and energy analysis
of HVAC systems using simulation," Energy and Buildings, vol. 32, p. 12,
2000.
[24] M. Kasahara, Y. Kuzuu, T. Matsuba, Y. Hashimoto, K. Kamimura, and K. S.,
"Physical Model of an Air Conditioned Space for Control Analysis,"
ASHRAE Trans, vol. 106 part2, 2000.
[25] X. Peng and A. H. C. v. Paassen, "A state space model for predicting and
controlling the temperature responses of indoor air zones," Energy and
Buildings, vol. 28, pp. 197-203, 1998.
[26] P. Riederer, D. Marchio, J. C. Visier, A. Husaunndee, and R. Lahrech,
"Room thermal modelling adapted to the test of HVAC control systems,"
Building and Environment, vol. 37, pp. 777-790, 2002.
[27] S. Goyal and P. Barooah, "A method for model-reduction of non-linear
thermal dynamics of multi-zone buildings," Energy and Buildings, vol. 47,
pp. 332-340, 2012.
[28] D. S. Naidu and C. Rieger, "Advanced control strategies for heating,
ventilation, air-conditioning, and refrigeration systems—An overview: Part
I: Hard control," HVAC&;R Research, vol. 17, pp. 2-21, 2011.
[29] A. Kusiak, G. Xu, and F. Tang, "Optimization of an HVAC system with a
strength multi-objective particle-swarm algorithm," Energy, vol. 36, pp.
5935-5943, 2011.
[30] A. Kusiak, F. Tang, and G. Xu, "Multi-objective optimization of HVAC
system with an evolutionary computation algorithm," Energy, vol. 36, pp.
2440-2449, 2011.
[31] R. Z. Homod, K. S. M. Sahari, H. A. F. Almurib, and F. H. Nagi, "Double
cooling coil model for non-linear HVAC system using RLF method,"
Energy and Buildings, vol. 43, pp. 2043-2054, 2011.
[32] J. M. Counsell, Y. A. Khalid, and J. Brindley, "Controllability of buildings: A
multi-input multi-output stability assessment method for buildings with
slow acting heating systems," Simulation Modelling Practice and Theory,
vol. 19, pp. 1185-1200, 2011.
[33] A. Kusiak and M. Li, "Reheat optimization of the variable-air-volume box,"
Energy, vol. 35, pp. 1997-2005, 2010.
[34] H. J. Han, Y. I. Jeon, S. H. Lim, W. W. Kim, and K. Chen, "New
developments in illumination, heating and cooling technologies for
energy-efficient buildings," Energy, vol. 35, pp. 2647-2653, 2010.
66
[35] M. Horn, and M. Reichhartinger, "Elimination of Limit Cycles in HVAC
Systems using the Describing Function Method," IEEE Conference on
Decision and Control, 2009.
[36] Y. Tachwali, H. Refai, and J. E. Fagan, "Minimizing HVAC Energy
Consumption Using a Wireless Sensor Network," IEEE 33rd Annual
Conference , 2007.
[37] L. Lu, W. Cai, L. Xie, S. Li, and Y. C. Soh, "HVAC system
optimization—in-building section," Energy and Buildings, vol. 37, pp. 11-22,
2005.
[38] M. Zaheer-Uddein and Z. GR., "A dynamic model of a multizone VAV
system for control analysis " ASHRAE Trans, vol. 100 Part 1, 1994.
[39] Y. Zhang, E.M. Brber, and HC. W., "Analysis of stability of livestock
building heating/ventilatuon control systems," ASHRAE Trans, vol. 99 Part
2, 1993.
[40] M. Zaheer-uddin and P. A. Goh, "Transient response of a closed-loop VAV
system," ASHRAE Trans, vol. 97 Part 2, 1991.
[41] D.R. Clark, C.W. Hurley, and C.R. H., "Dynamic Models for HVAC System
Componetts," ASHRAE Trans, vol. 91 part1, 1985.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top