跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.108) 您好!臺灣時間:2025/09/02 05:24
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃盈叡
研究生(外文):Huang, Yin-Ray
論文名稱:正交分頻多工系統干擾消除
論文名稱(外文):Interference Cancellation for OFDM Systems
指導教授:馮智豪
指導教授(外文):Fung, Carrson
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電子研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:英文
論文頁數:49
中文關鍵詞:正交分頻多工干擾消除
外文關鍵詞:OFDMInterference Cancellation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:195
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
通道效應,例如多路徑與時變衰竭將會降低無線通訊系統表現。其中,多路徑衰竭與都普勒效應在多載波系統中造成符號間干擾與子載波干擾。如不加以妥善處理,上述干擾將會嚴重影響聯結可靠度。與疊加性通道雜訊不同的是,符號干擾以及子載波干擾不能隨著信號雜訊比的增加而消除。因此,通道等化與干擾消除乃回復系統表現必要之道。

吾人提出一個新穎的頻域干擾消除器,予以抑制通道干擾(符號與子載波)、共同通道干擾,與重疊系統干擾。不同於以往的技術,此消除器演算法不需要時域過度取樣或者使用一個以上的接收天線。上述特點可以經由利用空載波(系指在標準多載波系統中必備的)與一個類似廣義旁瓣消除器來達成。此一方法可以達到比前人更佳的位元錯誤率與更簡易的計算複雜度。

接下來,吾人針對正交分頻多工系統提出一個迭代干擾消除演算法,用於抑制雙重衰變通道引發子載波干擾、共同通道干擾,以及重疊系統干擾。類似於上述技術,此方法不需要任何時域過度取樣或是使用一個以上的接收天線。使用空載波來接續迭代抑制干擾造成的有害影響,此法藉著擴展廣義旁瓣消除器的零空間,以取得更佳的干擾估計。模擬指出吾人提出的技術,零空間擴張干擾消除,優於前人所發表的單方衰變干擾抑制演算法。零空間擴張干擾消除的計算複雜度亦將被討論。

Channel effects such as multipath and time-varying fading have been known to hamper performance of wireless communication systems. In particular, multipath fading and Doppler effects causes intersymbol interference (ISI) and intercarrier interference (ICI) in the case of multicarrier systems. If not handled properly, these interferences can severely degrade link reliability. Unlike additive channel noise, BER degradation from ISI and ICI cannot be prevented by simply increasing the SNR. Hence, channel equalization and interference cancellation is often necessary in order to mitigate these detrimental effects.

A new frequency domain interference canceler is supposed to suppress channel induced interference such as ICI and ISI, co-channel interference, and overlaid systems interference. Unlike earlier schemes, this proposed algorithm requires no temporal oversampling nor the use of more than one receive antenna. All the above is achieved by exploiting null subcarriers (a.k.a. virtual / unused / unmodulated subcarriers) inherent in standard multicarrier systems, and by a generalized sidelobe cancellation (GSC) like scheme. This proposed method can offer superior bit error rate over earlier methods as well as simpler computations over another GSC like scheme.

Next, an iterative interference cancellation algorithm is proposed for OFDM based systems that can mitigate doubly-fading channel induced ICI, co-channel interference, and overlaid systems interference. Similar to the proposed scheme above, the present technique does not require any temporal oversampling nor the use of more than one receive antenna. This is achieved by properly exploiting the null subcarriers (NSCs) inherent in standard multicarrier systems to successively and iteratively suppress the adverse effects of the interference by expanding the nullspace of a generalized sidelobe cancellation like scheme to allow for better estimate of the interference. Simulation results show that the proposed technique, called Interference Cancellation via Subspace Expansion, or ICVISE, can outperform previously proposed technique which can only cancel interference caused by frequency-selective fading channels. The computational complexity of ICVISE and other related algorithms will also be illustrated and discussed.


摘要 ..................................................................................................................................i
Abstract ..........................................................................................................................iii
Acknowledgement .......................................................................................................vi
Contents .........................................................................................................................vii
Abbreviations and Notations .....................................................................................viii
List of Figures .................................................................................................................x
List of Tables .................................................................................................................xii
Chapter 1 Introduction ......................................................................................................1
1.1 Research Motivation ……...………………….....................................................1
1.2 Thesis Organization ……….................................................................................3
1.3 Publications .......................................................................................................3
Chapter 1 Background ......................................................................................................5
2.1 OFDM System Model……...………………….....................................................5
2.1.1 OFDM Standards with Null-Sub-Carriers..........................................................7
2.2 Doubly-Selective Fading Channel..........................................................................8
2.2.1 Characterization of Multipath Channel...................................................8
2.2.2 Doubly-Selective Channel Model for OFDM Systems....................................9
2.3 Previous Work..........................................................................10
2.3.1 Time Domain Approach……………………...................................................11
2.3.2 Frequency Domain Approach……………………........................................11
2.3.3 Iterative Methods…………………………………....................................12
Chapter 3 Interference Cancellation for OFDM Systems with Insufficient CP……...…..14
3.1 Proposed NSC-based Equalizer……….....................................................14
3.2 Results and Comparisons.…………………............................................................17
3.2.1 Computational Complexity............................................................................17
3.2.2 Monte-Carlo Simulations………………………………...............................18
Chapter 4 Equalization of Doubly-Selective Channels for OFDM-Based Systems……….24
4.1 Motivation and Previous Work…….….....................................................24
4.2 Methodology……...…………………............................................................27
4.2.1 System Model...................................................................................27
4.2.2 Proposed Scheme…………………………...........................................29
4.3 Simulation Results………………….…............................................................34
4.3.1 Computational Complexity..............................................................................35
4.3.2 Monte-Carlo Simulations…………………………...........................................37

Chapter 5 Conclusions and Future Works………………....……………………………..41
5.1 Conclusions…………………..………............................................................41
5.2 Future Works………….……………............................................................42
Bibliography....................................................................................................................43

[1] P.J.W. Melsa, R.C. Younce and C.E. Rohrs, \Impulse Response Shortening for Dis-
crete Multitone Transceivers," IEEE Trans. on Communications, vol. 44(12), pp.
1662-1672, Dec. 1996.
[2] G. Arslan, B.L. Evans and S. Kiaei, \Equalization for Discrete Multitone Receivers
to Maximize Bit Rate," IEEE Trans. on Signal Processing, vol. 49(12), vol. 51(7),
pp. 3123-3135, Dec. 2001.
[3] A. Tkacenko and P.P. Vaidyanathan, \A Low-Complexity Eigen¯lter Design Method
for Channel Shortening Equalizers for DMT Systems," IEEE Trans. on Communi-
cations, vol. 51(7), pp. 1069-1072, Jul. 2003.
[4] Y. Mosto¯ and D. C. Cox, \ICI Mitigation for Pilot-Aided OFDM Mobile Systems,"
IEEE Transactions on Wireless Communications, vol. 4, No. 2, Mar. 2005.
[5] M. Milosevic, L. F. C. Pessoa, B. L. Evans, and R. Baldick, \DMT Bit Rate Maxi-
mization With Optimal Time Domain Equalizer Filter Bank Architecture," Proc. of
the IEEE Asilomar Conf. on Signals, Systems, and Computers, vol. 1, pp. 377-382,
Nov. 2002.
[6] K. Vanbleu, G. Ysebaert, G. Cuypers, M. Moonen, and K. Van Acker, \Bitrate
Maximizing Time-Domain Equalizer Design for DMT-Based Systems," IEEE Trans.
on Communications, vol. 52(6), pp. 871-876, Jun. 2004.
[7] M. Patzold, A. Szczepanski, and N. Youssef, \Methods for Modeling of Speci¯ed
and Measured Multipath Power-Delay Pro¯les," IEEE Transactions on Vehicular
Technology, Vol. 51, No. 5, Sep. 2002.
[8] Y. Chen & C. Wang, \Adaptive Antenna Arrays for Interference Cancellation in
OFDM Communication Systems With Virtual Carriers," IEEE Trans. on Vehicular
Technology, vol. 56(7), pp. 1837-1844, Jul. 2007.
[9] IEEE Standard for 802.16e-2005, Part 16: Air Interface for Fixed and Mobile Broad-
band Wireless Access Systems, Dec. 2005.
[10] H.J. Kim and J.P.M.G. Linnartz, "Virtual Cellular Network: a new communications
architecture with multiple access ports", 44th IEEE Vehicular Technology Confer-
ence, Stockholm, pp. 1055-1059, Jun. 1994.
[11] P.P. Vaidyanathan, Multirate Systems and Filter Banks, Prentice-Hall, 1993.
[12] S. Kay, Fundamentals of Statistical Processing, Vol. I: Estimation Theory, Prentice
Hall, 1993.
[13] A. Gusmao, P. Torres, R. Dinis & N. Esteves, \A Reduced-CP Approach to SC/FDE
Block Transmission for Broadband Wireless Communication," IEEE Trans. on Com-
munications, vol. 55(4), pp. 801-809, Apr. 2007.
[14] Z. Wang and G. B. Giannakis "Wireless multicarrier communications: Where fourier
meets shannon", IEEE Signal. Process. Mag., vol. 17, no. 3, pp. 29-48, May 2000.
[15] A. Gorokhov and J.P.M.G. Linnartz, "Robust OFDM receivers for dispersive time
varying channels: equalisation and channel estimation", ICC 2002, paper 1453, New
York, Session OFDM-2, 29-4, May., 2002.
[16] D. Kim and G. L. StÄuber, \Residual ISI Cancellation for OFDM with Applications
to HDTV Broadcasting," IEEE Journal on Selected Areas in Communications, vol.
16(8), pp. 1590-1599, Aug. 1998.
[17] P. Torres and A. Gusmao, \Iterative Receiver Technique for Reduced-CP, Reduced-
PMEPR OFDM Transmission," IEEE Vehicular Technology Conference-Spring, pp.
1981-1985, Apr. 2007.
[18] Thorsten Hehn, Robert Schober, Wolfgang H. Gerstacker, \Optimized delay diversity
for frequency-selective fading channels," IEEE Transcations on Wireless Communi-
cations, vol.7, pp. 2289-2298, Jan. 2005.
[19] S. Chen and T. Yao, \FEQ for OFDM Systems with Insu±cient CP," IEEE Int.
Symp. on Personal, Indoor and Mobile Radio Communications, vol. 1, pp. 550-553,
2003.
[20] S. Trautmann and N. J. Fliege, \Perfect Equalization for DMT Systems without
Guard Interval," IEEE Journal on Selected Areas in Communications, vol. 20(5),
pp. 987-996, May. 2002.
[21] F. O. Alayyan, Y. H. Leung and A. M. Zoubir, \Linear One Tap Equalizer for
the Spatial Diversity Based on GI-less OFDM System," IEEE Workshop on Signal
Processing Advances in Wireless Communications, pp. 141-145, Jun. 2005.
[22] Keun Chul Hwang, Kwang Bok Lee, Joint transmit and receive ¯lters design for
multiple-input multiple-output (MIMO) systems, IEEE Transactions on Communi-
cations, vol. 8, pp. 1635-1649, Jan. 2005.
[23] Y. Song, S. Roy and L. A. Akers, \Joint Blind Estimation of Channel and Data
Symbols in OFDM," IEEE Vehicular Technology Conf., vol. 1, pp. 46-50, May. 2000.
[24] Li Cong, Weihua Zhuang, \Nonline-of-sight error mitigation in mobile location,"
IEEE Transactions on Wireless Communications, vol. 16, pp.560-573, Feb. 2005.
[25] C. Park and G. Im, \E±cient DMT/OFDM Transmission with Insu±cient Cyclic
Pre¯x," IEEE Communications Letters, vol. 8(9), pp. 576-578, Sep. 2004.
[26] K. Hayashi & S. Hara, \A New Spatio-Temporal Equalization Method Based on
Estimated Channel Response," IEEE Trans. on Vehicular Technology, vol. 50(5),
pp. 1250-1259, May. 2001.
[27] Andrea Giorgetti, Marco Chiani, \In°uence of fading on the Gaussian approximation
for BPSK and QPSK with asynchronous cochannel interference," IEEE Transactions
on Communications, vol. 24, pp. 384-389, Mar. 2005.
[28] C. Toker, S. Lambotharan & J. A. Chambers, \Joint Transceiver Design for MIMO
Channel Shortening," IEEE Trans. on Signal Processing, vol. 55(7), pp. 3851-3866,
Jul. 2007.
[29] C. Y. Lin, J. Y. Wu and T. S. Lee, \A Near-optimal Low-complexity Transceiver
for CP-free Multi-antenna OFDM Systems," IEICE Trans. on Communications, vol.
89(1), pp. 88-99, Jan. 2006.
[30] Hemanth Sampath, Vinko Erceg, A. Paulraj, \Performance analysis of linear pre-
coding based on ¯eld trials results of MIMO-OFDM system, " IEEE Transaction on
Wireless Comunications, vol.17, pp. 404-409, Apr. 2004.
[31] C.Z.W.H. Swetman et al., \A Comparison of the MMSE Detector and its BLAST
Versions for MIMO Channels," IEE Seminar on MIMO: Communications Systems
from Concept to Implementations, pp. 19/1-19/6, Dec. 2001.
[32] Y. Huang, J. Benesty and J. Chen, \Separating ISI and CCI in a Two-step FIR
Bezout Equalizer for MIMO Systems of Frequency-selective Channels," Proc. of the
Intl. Conf. on Acoustics, Speech, and Signal Processing, vol. 4, pp. 797-800, May
2004.
[33] Chung-Liang Chang, Te-Ming Tu, \Performance analysis of FFH/BFSK product-
combining receiver with partial-band jamming over independent Rician fading chan-
nels, IEEE Transactions on Wireless Communications, vol. 32, pp. 2629-2635, Feb.
2006.
[34] B. O'Hara and A. Petrick, IEEE 802.11 Handbook, IEEE Press, 2005.
[35] G. H. Golub and C. F. Van Loan, Matrix Computation, John Hopkins University
Press, 1996.
[36] X. Cai and G. B. Giannakis, \Bounding Performance and Suppressing Intercarrier
Interference in Wireless Mobile OFDM," IEEE Trans. on Communications, vol. 51,
no. 12, pp. 2047-2056, Dec. 2003.
[37] B. Rugini and R. Mariochi, \BER of OFDM systems impaired by carrier frequency
o®set in multipath fading channels, " IEEE Transactions on Vehicular Technology,
vol. 26, pp. 2279-2288, Apr. 2005.
[38] S. Chen and C. Zhu, \ICI and ISI Analysis and Mitigation for OFDM Systems
with Insu±cient Cyclic Pre¯x in Time-Varying Channels," IEEE Tran. Consumer
Electronics, vol. 50, no. 1, pp. 78-83, Feb. 2004.
[39] S. Lu, R. Kalbasi, and N. Al-Dhahir, \OFDM interference mitigation algorithms for
doubly-selective channels," IEEE Vehicular Technology Conf., pp. 1-5, Sep. 2006.
[40] S. Lu and N. Al-Dhahir, \Coherent and Di®erential ICI Cancellation for Mobile
OFDM with Application to DVB-H," IEEE Trans. on Wireless Communications,
vol. 7, no. 7, Jul. 2008.
[41] H. L. Van Trees, Optimum Array Processing, Part IV: Detection, Estimation, and
Modulation Theory, John Wiley & Sons. Inc., 2002.
[42] Stefano Tomasin, Alexei Gorokhov, Haibing Yang, Jean-Paul Linnartz, \Reduced
Complexity Doppler Compensation for Mobile DVB-T, " PIMRC 2002, Lisbon, paper
1584, May 2002.
[43] K Hayashi & H Sakai. \A Simple Interference Elimination Scheme for Single Carrier
Block Transmission with Insu±cient Cyclic Pre¯x," Wireless Personal Multimedia
Comm., vol. 2, pp. 577-581, 2004.
[44] S. Chen and T. Yao, \Equalization of OFDM Systems in Time-Varying Channels
Using Frequency Domain Redundancy," Proc. of IEEE International Symposium on
Circuits and Systems, vol. 3, pp. 609-612, May 2004.
[45] W. C. Jakes, Microwave Mobile Communications, IEEE Press, 1994.
[46] Y.-R. Huang, C. C. Fung and K. T. Wong, \Interference Suppression for OFDM
Systems With Insu±cient Guard Interval Using Null Subcarriers," IEEE Signal Pro-
cessing Letters, vol. 16, no. 11, pp. 929-932, Nov. 2009.
[47] Yik-Chung Wu, Kun-Wah Yip, Tung-Sang Ng, Erchin Serpedin, \Maximum-
likelihood symbol synchronization for IEEE 802.11a WLANs in unknown frequency-
selective fading channels, " IEEE Transactions on Communications, vol. 8, pp. 2751-
2763, Mar. 2005.
[48] M. Hampejs, et al., \Sequential LSQR-based ICI equalization and decision-feedback
ISI cancellation in pulse-shaped multicarrier systems," Proc. of the IEEE Workshop
on Signal Processing Advances in Wireless Communications, pp. 1-5, Jun. 2009.
[49] P. Schniter, \Low-Complexity Equalization of OFDM in Doubly Selective Channels,"
IEEE Trans. on Signal Processing, vol. 52, no. 4, pp. 1002-1011, Apr. 2004.
[50] I. Barhumi, G. Leus and M. Moonen, \Equalization for OFDM Over Doubly Selective
Channels," IEEE Trans. on Signal Processing, vol. 54, no. 4, pp. 1445-1458, Apr.
2006, pp. 1-13, 2006, Article ID 67404.
[51] L. Rugini, P. Banelli and G. Leus, \Low-Complexity Banded Equalizers for OFDM
Systems in Doppler Spread Channels," EURASIP J. on Applied Signal Processing,
2006.
[52] B. O'Hara and A. Petrick, IEEE 802.11 Handbook, IEEE Press, 2005.
[53] G. H. Golub and C. F. Van Loan, Matrix Computation, John Hopkins University
Press, 1996.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top