跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 17:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃沛愉
研究生(外文):Pei-Yu Huang
論文名稱:菲涅爾透鏡聚光系統設計與模擬研究
論文名稱(外文):Designing of Fresnel Lenses for Solar Concentrators
指導教授:林浩雄林浩雄引用關係
學位類別:碩士
校院名稱:國立臺灣大學
系所名稱:光電工程學研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:70
中文關鍵詞:透鏡集光器折射式聚光
外文關鍵詞:Fresnel lensconcentratorconcentration ratioF-numbersecondary optical element
相關次數:
  • 被引用被引用:0
  • 點閱點閱:646
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文探討平面菲涅爾透鏡應用於聚光型太陽能電池之鏡組設計與特性,主要分為三個倍率設計應用於不同太陽能電池的聚光鏡組。首先我們使用高倍率的菲涅爾透鏡為主光學元件,分析透鏡的焦距限制以及焦距長短對幾何放大倍率、接收率和接收角度的影響,然後使用方型光學導管為二次光學元件來提升系統的接收角度以及光分布均勻度,設計適合應用於III-V族太陽能電池的高倍率聚光系統,此系統於625倍的幾何放大倍率下,工作距離為95 mm的鏡組對於正負1.265度入射的光線,其理想光學效率可達87.5%以上。再來則是討論100倍幾何放大倍率的透鏡,設計適合應用於薄膜太陽能電池的中倍率聚光透鏡,我們將透鏡分成數個環狀區域改變各區域稜鏡聚焦平面的位置來提升接收面的光分布均勻度,此透鏡與接收平面之距離為66 mm,系統對於正負1.265度入射的光線可以達到95%的光學效率。最後我們針對矽太陽能電池設計3倍幾何放大倍率的透鏡,使用寬稜鏡間距的設計來減少尖端圓角造成的光學效率損失,此透鏡之焦距為90 mm,具有正負4度的接收角度。

This study analyzes the designs and properties of flat Fresnel lenses applied in refractive concentrator systems. For a high concentration ratio, the Fresnel lens design for III-V multi-junction solar cells uses a 625× geometrical concentration ratio. We use the square light tube as a secondary optical element to increase the acceptance angle and the energy distribution. The working distance is 95 mm, and the ideal optical efficiency achieves 87.5% in ±1.265 incident degrees. Secondly, the lens for the 100× geometrical concentration ratio is applied to thin-film solar cells. We divide the lens into three cyclic zones, and each part has a different focal plane to increase the uniformity of light distribution. The acceptance angle in this medium concentration system is ±1 degree, and the ideal optical efficiency is 95% in ±1.265 degrees with a 66 mm working distance. For the final part which uses a 3× geometrical concentration ratio, the system is designed for applications in silicon solar cells. Considering the loss of optical efficiency caused by the draft angle of the vertical facets and the roundness of vertices, we use wide prism pitches to reduce the fidelity loss of fabrication. This system’s focal length is 90 mm, and the acceptance angle is ±4 degrees.

中文摘要i
Abstractiii
目錄v
附表索引vii
附圖索引ix
第一章 序論
1.1前言1
1.2聚光型太陽能電池2
1.3菲涅爾透鏡6
1.4論文架構8
第二章 相關理論介紹
2.1幾何光學原理13
2.2非成像光學15
2.3相關名詞介紹16
第三章 高倍率聚光系統設計與模擬分析
3.1菲涅爾透鏡設計21
3.2菲涅爾透鏡模擬與分析23
3.2.1接收率25
3.2.2放大倍率26
3.2.3均勻度29
3.3二次光學元件32
第四章 低倍率聚光系統設計與模擬分析
4.1線性菲涅爾透鏡設計49
4.2線性菲涅爾透鏡模擬與分析51
4.2.1接收角度54
4.2.2接收率55
4.3拔模角與尖端圓角56
第五章 結論
結論65
參考文獻67


[1]J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, Hai Lu, William J. Schaff, W. K. Metzger, and Sarah Kurtz, “Superior radiation resistance of In1−xGaxN alloys: Full-solar-spectrum photovoltaic material system,” J. Appl. Phys., vol. 94, p. 6477, 2003.
[2]R. R. King, D. C. Law, K. M. Edmondson, C. M. Fetzer, G. S. Kinsey, H. Yoon, R. A. Sherif, and N. H. Karam, “40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells,” Appl. Phys. Lett., vol. 90, 183516, 2007.
[3]Md. Sherajul Islam, A. K. M. Zillur Rahman, Md. A. R. Chowdhury, Md. Rafiqul Islam, and Ashraful G. Bhuiyan, “InxGa1-xN Based Multi Junction Concentrator Solar Cell,” ICECE, p. 578, 2008.
[4]Jeffrey F. Wheeldon, Christopher E. Valdivia, Alex Walker, Gitanjali Kolhatkar, Trevor J. Hall, Karin Hinzer, Denis Masson, Simon Fafard, Abdelatif Jaouad, Artur Turala, Richard Ares, and Vincent Aimez, “AlGaAs Tunnel Junction for High Efficiency Multi-Junction Solar Cells : Simulation and Measurement of Temperature-Dependent Operation,” IEEE, p. 106, 2009.
[5]A. Luque and S. Hegedus, “Handbook of Photovoltaic Science and Engineering,”John Wiley & Sons, 2003.
[6]Aman Dang, “Concentrators: A Review,” Energy Convers. Mgmt, vol. 26, no. 1, p. 11, 1986.
[7]R. Leutz, A. Suzuki, A. Akisawa, and T. Kashiwagi, “Design of a Nonimaging Fresnel Lens for Solar Concentrators,” Solar Energy, vol. 65, no. 6, p. 379, 1999.
[8]William A. Parkyn and David G. Pelka, “Compact non-imaging lens with totally internally reflecting facets,” SPIE, vol. 1528, 1991.
[9]A. Terao, W. P. Mulligan, S. G. Daroczi, O. C. Pujol, P. J. Verlinden, R. M. Swanson, J. C. Minano, P. Benitz, and J. L. Alvarez, “A mirror-less design for micro-concentrator modules,” Photovoltaic Specialists Conference, p. 1416, 2000.
[10]V. Diaz, J. Alonso, M. Hernandez, J.L. Alvarez, M. Labrador, J. Blen, R. Mohedano, P. Benitez, J. C. Minano, W. Preuss, and A. Gessenhater, “Progress in the manufacture of ultra flat optics for very high concrntration flat panels,” Proceedings of the 29th IEEE PVSC, p. 1580, 2002.
[11]A. Terao, S. G. Daroczi, S. J. Coughlin, W. P.Mulligan, and R. M. Swanson, “New developments on the flat-plate micro-concentrator module,” 3rd world Conference on Photovoltaic Energy Conversion, p. 861, 2003.
[12]Jose L. Alvarez, Javier Cabrera, Vicente Diaz, Carlos Mateos, Nuria Montoya, and Jesus Alonso, “Industrialization of 1000X concentration photovoltaic modules,” Proc. of SPIE, vol. 6197, 61970I, 2006.
[13]Frank L. Pedrotti and Leno S. Pedrotti, “Introduction to Optics,” Prentice Hall, 2nd Edition, 1993.
[14]Jacques E. Ludman, “Holographic solar concentrator,” Applied Optics, vol. 21, no. 17, p. 3507, 1982.
[15]Jan Christoph Goldschmidt, Marius Peters, Armin Bosch, Henning Helmers, Frank Dimroth, Stefan W. Glunz, and Gerhard Willeke, “Increasing the efficiency of fluorescent concentrator systems,” Solar Energy Materials & Solar Cells, vol. 93, p. 176, 2009.
[16]Erwin Delano, “Primary aberration contributions for curved Fresnel surfaces,” J. Opt. Soc. Am., vol. 68, no. 10, 1978.
[17]Cristina Sierra and Alfonso J. Vazquez, “High solar energy concentration with a Fresnel lens,” J. Materials Science, vol. 40, p. 1339, 2004.
[18]R. Leutz and A. Suzuki, “Nonimaging Fresnel Lenses: Design and Performance of Solar Concentrators,” Springer, 2001.
[19]Thomas Tag, “The Early Development of Fresnel Lens,” U. S. Lighthouse Society''s The Keeper''s Log, 2005.
[20]W. T. Welford and R. Winston, “High Collection Nonimaging Optics,” Academic Press, 1989.
[21]P. A. Davies, “Edge-ray principle of nonimaging optics,” J. Optical Society of America, vol. 11, no. 4, 1994.
[22]Tver’yanovich and E. V., “Profiles of solar-engineering fresnel lenses,” Appl. Solar Energy, vol. 19, no. 6, p. 36, 1984.
[23]Ralf Leutz, Akio Suzuki, Atsushi Akisawa, and Takao Kashiwagi, “Developments and designs of solar engineering Fresnel lenses,” Proceedings Symposium on Energy Engineering, vol. 2, p. 759, 2000.
[24]Don A. Gregory and Guolin Peng, “Random facet Fresnel lenses and mirrors,” Optical Engineering, vol. 40, no. 5, p. 713, 2001.
[25]Xiaohui Ning, Joseph O’Gallagher, and Roland Wiston, “Optics of two-stage photovoltaic concentrators with dielectric second stages,” Applied Optics, vol. 26, no. 7, p. 1207, 1987.
[26]Ryu K., Rhee J. G., Park K. M., and Kim J., “Concept and design of modular Fresnel lenses for concentration solar PV system,” Solar Energy, vol. 80, p. 1580, 2006.
[27]A. Luque, G. Sala, and J. C. Arboiro, “Electric and thermal model for non-uniformly illuminated concentration cells,” Solar Energy Materials and Solar Cells, vol. 51, p. 269, 1998.
[28]Daniel Vázquez-Moliní, Antonio Álvarez Fernández-Balbuena, Eusebio Bernabeu, Javier Muñoz de Luna Clemente, and Alfonso Domingo-Marique, “New concentrator multifocal Fresnel lens for improved uniformity: design and characterization,” Proc. of SPIE, vol. 7407, 740701I, 2009.
[29]Stefka Nikolova Kasarova, Nina Georgieva Sultanova, Christo Dimitrov Ivanov and Ivan Dechev Nikolov, “Analysis of the dispersion of optical plastic materials,” Optical Materials, vol. 29, p. 1481, 2007.
[30]M. Victoria, C. Dom´ınguez, I. Anton, and G. Sala, “Comparative analysis of different secondary optical elements for aspheric primary lenses,” Optics Express, vol. 17, p. 6487, 2009.
[31]Arthur Davis and Frank Kuhnlenz, “Optical Design Using Fresnel Lenses,” Optic & Photonic, no. 4, 2007.
[32]Michihiro Yamagata, Yasuhiro Tanaka, and Tomohiko Sasano, “Efficiency Simulation for Diamond-Turned Diffractive Lenses,” Jpn. J. Appl. Phys., vol. 37, p. 3695, 1998.
[33]Arthur Davis, “Raytrace assisted analytical formulation of Fresnel lens transmission efficiency,” Proc. of SPIE, vol. 7429, 74290D, 2009.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top