|
[1] N. Ali-Hasan and E. Adamic, “Expressing Social Relationships on the Blog through links and comments”, Referencing, www.ladamic.com/work/papers/oc/onlinecommunities.pdf. (accessed 9 June 2008). [2] N. Agarwal, M. Galan, H. Liu, and S. Subramanya, “Clustering Blogs with Collective Wisdom” in Proceedings of Eighth International Conference on Web Engineering(ICWE), Jul. 2008, pp. 336-339. [3] N. Agarwal, M. Galan, H. Liu, and S. Subramanya, WisColl: Collective Wisdom Based Blog Clustering, Information Sciences 2010; 180(1): 39-61. [4] V. Abhishek and K. Hosanagar, “Keyword Generation for Search Engine Advertising using Semantic Similarity between Terms” in: Proceedings of the 9th International Conference on Electronic Commerce(ICEC), Aug. 2007, pp. 89-94. [5] Blog Connect. Referencing, http://bridge.nchu.edu.tw/BC/. [6] U. Bojars, J. G. Breslin, V. Peristeras, G. Tummarello, and S. Decker. Interlinking the Social Web with Semantics. Journal of IEEE Intelligent Systems 2008; 23 (3): 29-40. [7] R. P. Carver, Reading for One Second, One Minute, or One Year From the Perspective of Rauding Theory. Scientific Studies of Reading 1997; 1(1): 3-43. [8] J. L. Elsas, J. Arguello, J. Callan and J. G. Carbonell, “Retrieval and Feedback Models for Blog Feed Search,” in: Proceedings of the 31st Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, Singapore, July 2008, pp. 347-354.
[9] A. Fuxman, P. Tsaparas, K. Achan, and R. Agrawal, “Using the wisdom of the crowds for keyword generation” in: Proceedings of the 17th International Conference on World Wide Web(WWW), Apr. 2008, pp. 61-70. [10] J. Gao and W. Lai, “Formal Concept Analysis Based Clustering for Blog Network Visualization,” in: Proceedings of International Conference on Advanced Data Mining and Applications, Berlin: Heidelberg, 2010, pp. 394-404. [11] J. Gao and W. Lai, “Visualizing Blogsphere Using Content Based Clusters” in: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence Agent Technology, Dec. 2008, vol. 1, pp. 832-835. [12] G. Hope, T. Wang, and S. Barkataki, “Convergence of Web 2.0 and Semantic Web: A Semantic Tagging and Searching System for Creating and Searching Blogs,” in: Proceedings of IEEE International Conference on Semantic Computing (ICSC), Irvine: California, 2007, pp. 201-208. [13] X. Hu, and B. Wu, “Automatic Keyword Extraction Using Linguistic Features” in: Proceedings of the Sixth IEEE International Conference on Data Mining-Workshop(ICDMW), Dec. 2006, pp. 19-23. [14] A. Juffinger and E. Lex, “Crosslanguage Blog Mining and Trend Visualisation” in Proceedings of 18th International World Wide Web Conference, Apr. 2009, pp.1149-1150. [15] B. J. Jansen, D. L. Booth, and A. Spink, “Determining the User Intent of Web Search Engine Queries,” in: Proceedings of International Conference on World Wide Web, Alberta: Canada, 2007, pp.1149-1150. [16] JSOUP, “Java HTML Parser”, Referencing: http://jsoup.org/. [17] N. Johnson, 2008, “Google on User Intent in Search Queries, Search Engine Watch,” [Online] Available: http://searchenginewatch.com/article/2053806/Google-On-User-Intent-in-Search-Queries. [18] T. Kuzar and P. Navrat, “Preprocessing of Slovak Blog Articles for Clustering” in: Proceedings of IEEE/WIC/ACM International Conference on Web Intelligence and Intelligent Agent Technology, 2010, Aug. 2010, vol. 3, pp. 314-317. [19] J. W. Kim, K. S. Candan, and J. Tatemura, “CDIP: Collection-Driven, yet Individuality-Preserving Automated Blog Tagging” in: Proceedings of International Conference on Semantic Computing(ICSC), Sep. 2007, pp. 87-94. [20] M. G. Kendall, A New Measure of Rank Correlation, Biometrika 1938; 30(1/2): 81-93. [21] L. Lu and F. Zhu, “Blogger clustering by utilizing link information” in: Proceedings of IEEE International Conference on Intelligent Computing and Intelligent Systems(ICIS), 2010, Oct. vol. 2, pp. 267-270. [22] Y. Lu and H. Lee, “Blog Community Discovery Based on Tag Data Clustering” in: Proceedings of IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application(PACCIA), Dec. 2008, vol. 2, pp. 14-18. [23] B. Larsen and C. Aone, “Fast and Effective Text Mining Using Linear-time Document Clustering” in: Proceedings of the Fifth ACM SIGKDD International Conference on Knowledge discovery and Data Mining (KDD ’99), Aug. 1999, pp. 16-22. [24] V. Lai, C. C. Rajashekar, and W. Rand, “Comparing Social Tagging to Microblogs” in: Proceedings of third IEEE International Conference on Social Computing (socialcom)/Privacy, Security, Risk, and Trust(passt), Oct. 2011, pp. 1380-1383. [25] mmseg4j, Available: http://code.google.com/p/mmseg4j/. [26] B. Markines, C. Cattuto, F. Menczer, D. Benz, A. Hotho, and G. Stumme. “Evaluating similarity measures for emergent semantics of social tagging” in: Proceedings of the 18th International Conference on World Wide Web(WWW ’09), Apr. 2009, pp. 641-650. [27] K. Ohtsuki, T. Matsuoka, S. Matsunaga, and S. Furui, “Topic extraction with multiple topic-words in broadcast-news speech” in: Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May. 1998, vol. 1, pp. 329-332. [28] A. Qamra, B. Tseng, and E. Y. Chang, “Mining Blog Stories Using Community-based and Temporal Clustering,” in: Proceedings of 15th ACM International Conference Information and Knowledge Management, Arlington: Virginia, USA, 2006, pp. 58-67. [29] J. Sobel, “State of the Blogosphere 2010 Introduction. Technorat” , http://technorati.com/blogging/article/state-of-the-blogosphere-2010-introduction/ (2010, Nov. 3). [30] R. Stokes, Ultimate Guide to Pay-Per-Click Advertising, Irvine, CA: Entrepreneur Press, 2010. [31] State of Blogosphere, “State of the Blogosphere 2011: Introduction and Methodology,” Referencing: http://technorati.com/social-media/article/state-of-the-blogosphere-2011-introduction/ (2011, Nov. 4). [32] A. K. Singh and R. C. Joshi. Clustering of Blogs with Enhanced Semantics. International Journal of Computer Applications 2011; 16 (7): 12-16. [33] G. Srinivas, N. Tandon, and V. Varma. “A weighted tag similarity measure based on a collaborative weight model” in: Proceedings of the 2nd International Workshop on Search and Mining User-generated Contents(SMUC ’10), Oct. 2010, pp. 79-86. [34] G. Salton and M. J. McGill, Introduction to modern information retrieval, NY, USA: McGraw-Hill, Inc. 1986. [35] C.-H. Tsai, “A World Identification System for Mandarin Chinese Text Based on Two Variants of the Maximum Matching Algorithm”, Chih-Hao Tsai''s Technology Page [Online]. Referencing: http://www.geocities.com/hao510/mmseg/ ( 2004, Feb. 5). [36] T. Treanor, “2011 Blogging Statistics”, Referencing: http://www.rightmixmarketing.com/right-mix-blog/blogging-statistics/. (2011, Oct. 3). [37] WordNet, Referencing: http://wordnet.princeton.edu/. [38] Yahoo, “Yahoo Directory,” Referencing: http://dir.yahoo.com/. [39] Y. Zhang, K. Gao, B. Zhang, J. Guo, F. Gao, and P. Guo, “Clustering Blog Posts Using Tags and Relations in the Blogosphere” in: Proceedings of 1st International Conference on Information Science and Engineering(ICISE), Nanjing, China, Dec. 2009, pp. 817-820.
|