|
1. Meissner F, Mann M. Quantitative Shotgun Proteomics: Considerations for a High-Quality Workflow in Immunology. Nat Immunol. 15, 112-7 (2014). 2. Mallick P, Kuster B. Proteomics: A Pragmatic Perspective. Nat Biotechnol. 28, 695-709 (2010). 3. VerBerkmoes NC, Denef VJ, Hettich RL, Banfield JF. Systems Biology: Functional Analysis of Natural Microbial Consortia Using Community Proteomics. Nat Rev Microbiol. 7, 196-205 (2009). 4. Altelaar AF, Munoz J, Heck AJ. Next-Generation Proteomics: Towards an Integrative View of Proteome Dynamics. Nat Rev Genet. 14, 35-48 (2013). 5. Dettmer K, Aronov PA, Hammock BD. Mass Spectrometry-Based Metabolomics. Mass Spectrom Rev. 26, 51-78 (2007). 6. Wishart DS. Emerging Applications of Metabolomics in Drug Discovery and Precision Medicine. Nat Rev Drug Discov. (2016). 7. Johnson CH, Ivanisevic J, Siuzdak G. Metabolomics: Beyond Biomarkers and Towards Mechanisms. Nat Rev Mol Cell Biol. (2016). 8. Sun CS, Markey MK. Recent Advances in Computational Analysis of Mass Spectrometry for Proteomic Profiling. J Mass Spectrom. 46, 443-56 (2011). 9. Aebersold R, Mann M. Mass Spectrometry-Based Proteomics. Nature. 422, 198-207 (2003). 10. Ibanez C, Simo C, Garcia-Canas V, Cifuentes A, Castro-Puyana M. Metabolomics, Peptidomics and Proteomics Applications of Capillary Electrophoresis-Mass Spectrometry in Foodomics: A Review. Anal Chim Acta. 802, 1-13 (2013). 11. Distler U, Kuharev J, Navarro P, Tenzer S. Label-Free Quantification in Ion Mobility-Enhanced Data-Independent Acquisition Proteomics. Nat Protoc. 11, 795-812 (2016). 12. Azvolinsky A, DeFrancesco L, Waltz E, Webb S. 20 Years of Nature Biotechnology Research Tools. Nat Biotechnol. 34, 256-61 (2016). 13. Larance M, Lamond AI. Multidimensional Proteomics for Cell Biology. Nat Rev Mol Cell Biol. 16, 269-80 (2015). 14. Maze I, Shen L, Zhang B, Garcia BA, Shao N, Mitchell A, et al. Analytical Tools and Current Challenges in the Modern Era of Neuroepigenomics. Nat Neurosci. 17, 1476-90 (2014). 15. Moradian A, Kalli A, Sweredoski MJ, Hess S. The Top-Down, Middle-Down, and Bottom-up Mass Spectrometry Approaches for Characterization of Histone Variants and Their Post-Translational Modifications. Proteomics. 14, 489-97 (2014). 16. Zhang Z, Wu S, Stenoien DL, Pasa-Tolic L. High-Throughput Proteomics. Annu Rev Anal Chem (Palo Alto Calif). 7, 427-54 (2014). 17. Choudhary C, Mann M. Decoding Signalling Networks by Mass Spectrometry-Based Proteomics. Nat Rev Mol Cell Biol. 11, 427-39 (2010). 18. Yates JR, 3rd, Gilchrist A, Howell KE, Bergeron JJ. Proteomics of Organelles and Large Cellular Structures. Nat Rev Mol Cell Biol. 6, 702-14 (2005). 19. Stahl DC, Swiderek KM, Davis MT, Lee TD. Data-Controlled Automation of Liquid Chromatography/Tandem Mass Spectrometry Analysis of Peptide Mixtures. J Am Soc Mass Spectrom. 7, 532-40 (1996). 20. Domon B, Aebersold R. Mass Spectrometry and Protein Analysis. Science. 312, 212-7 (2006). 21. Egertson JD, Kuehn A, Merrihew GE, Bateman NW, MacLean BX, Ting YS, et al. Multiplexed Ms/Ms for Improved Data-Independent Acquisition. Nat Methods. 10, 744-6 (2013). 22. Michalski A, Cox J, Mann M. More Than 100,000 Detectable Peptide Species Elute in Single Shotgun Proteomics Runs but the Majority Is Inaccessible to Data-Dependent Lc-Ms/Ms. J Proteome Res. 10, 1785-93 (2011). 23. Liu H, Sadygov RG, Yates JR, 3rd. A Model for Random Sampling and Estimation of Relative Protein Abundance in Shotgun Proteomics. Anal Chem. 76, 4193-201 (2004). 24. Bern M, Finney G, Hoopmann MR, Merrihew G, Toth MJ, MacCoss MJ. Deconvolution of Mixture Spectra from Ion-Trap Data-Independent-Acquisition Tandem Mass Spectrometry. Anal Chem. 82, 833-41 (2010). 25. Malmstrom J, Lee H, Aebersold R. Advances in Proteomic Workflows for Systems Biology. Curr Opin Biotechnol. 18, 378-84 (2007). 26. Wu L, Han DK. Overcoming the Dynamic Range Problem in Mass Spectrometry-Based Shotgun Proteomics. Expert Rev Proteomics. 3, 611-9 (2006). 27. Wenner BR, Lynn BC. Factors That Affect Ion Trap Data-Dependent Ms/Ms in Proteomics. J Am Soc Mass Spectrom. 15, 150-7 (2004). 28. Blackburn K, Mbeunkui F, Mitra SK, Mentzel T, Goshe MB. Improving Protein and Proteome Coverage through Data-Independent Multiplexed Peptide Fragmentation. J Proteome Res. 9, 3621-37 (2010). 29. Carr S, Aebersold R, Baldwin M, Burlingame A, Clauser K, Nesvizhskii A, et al. The Need for Guidelines in Publication of Peptide and Protein Identification Data: Working Group on Publication Guidelines for Peptide and Protein Identification Data. Mol Cell Proteomics. 3, 531-3 (2004). 30. Wilkins MR, Appel RD, Van Eyk JE, Chung MC, Gorg A, Hecker M, et al. Guidelines for the Next 10 Years of Proteomics. Proteomics. 6, 4-8 (2006). 31. Purvine S, Eppel JT, Yi EC, Goodlett DR. Shotgun Collision-Induced Dissociation of Peptides Using a Time of Flight Mass Analyzer. Proteomics. 3, 847-50 (2003). 32. Plumb RS, Johnson KA, Rainville P, Smith BW, Wilson ID, Castro-Perez JM, et al. Uplc/Ms(E); a New Approach for Generating Molecular Fragment Information for Biomarker Structure Elucidation. Rapid Commun Mass Spectrom. 20, 1989-94 (2006). 33. Geiger T, Cox J, Mann M. Proteomics on an Orbitrap Benchtop Mass Spectrometer Using All-Ion Fragmentation. Mol Cell Proteomics. 9, 2252-61 (2010). 34. Panchaud A, Scherl A, Shaffer SA, von Haller PD, Kulasekara HD, Miller SI, et al. Precursor Acquisition Independent from Ion Count: How to Dive Deeper into the Proteomics Ocean. Anal Chem. 81, 6481-8 (2009). 35. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, et al. Targeted Data Extraction of the Ms/Ms Spectra Generated by Data-Independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Mol Cell Proteomics. 11, O111 016717 (2012). 36. Chambers MC, Maclean B, Burke R, Amodei D, Ruderman DL, Neumann S, et al. A Cross-Platform Toolkit for Mass Spectrometry and Proteomics. Nat Biotechnol. 30, 918-20 (2012). 37. Paik YK, Jeong SK, Omenn GS, Uhlen M, Hanash S, Cho SY, et al. The Chromosome-Centric Human Proteome Project for Cataloging Proteins Encoded in the Genome. Nat Biotechnol. 30, 221-3 (2012). 38. Paik YK, Omenn GS, Uhlen M, Hanash S, Marko-Varga G, Aebersold R, et al. Standard Guidelines for the Chromosome-Centric Human Proteome Project. J Proteome Res. 11, 2005-13 (2012). 39. Marko-Varga G, Omenn GS, Paik YK, Hancock WS. A First Step toward Completion of a Genome-Wide Characterization of the Human Proteome. J Proteome Res. 12, 1-5 (2013). 40. Lane L, Bairoch A, Beavis RC, Deutsch EW, Gaudet P, Lundberg E, et al. Metrics for the Human Proteome Project 2013-2014 and Strategies for Finding Missing Proteins. Journal of Proteome Research. 13, 15-20 (2014). 41. Omenn GS. The Strategy, Organization, and Progress of the Hupo Human Proteome Project. J Proteomics. 100, 3-7 (2014). 42. Choong WK, Chang HY, Chen CT, Tsai CF, Hsu WL, Chen YJ, et al. Informatics View on the Challenges of Identifying Missing Proteins from Shotgun Proteomics. J Proteome Res. 14, 5396-407 (2015). 43. Cho JY, Lee HJ, Jeong SK, Kim KY, Kwon KH, Yoo JS, et al. Combination of Multiple Spectral Libraries Improves the Current Search Methods Used to Identify Missing Proteins in the Chromosome-Centric Human Proteome Project. J Proteome Res. 14, 4959-66 (2015). 44. Ellis DI, Dunn WB, Griffin JL, Allwood JW, Goodacre R. Metabolic Fingerprinting as a Diagnostic Tool. Pharmacogenomics. 8, 1243-66 (2007). 45. Patti GJ, Yanes O, Siuzdak G. Innovation: Metabolomics: The Apogee of the Omics Trilogy. Nat Rev Mol Cell Biol. 13, 263-9 (2012). 46. Weiss RH, Kim K. Metabolomics in the Study of Kidney Diseases. Nat Rev Nephrol. 8, 22-33 (2012). 47. Baker M. Metabolomics: From Small Molecules to Big Ideas. Nat Methods. 8, 117-21 (2011). 48. Madsen R, Lundstedt T, Trygg J. Chemometrics in Metabolomics--a Review in Human Disease Diagnosis. Anal Chim Acta. 659, 23-33 (2010). 49. Issaq HJ, Van QN, Waybright TJ, Muschik GM, Veenstra TD. Analytical and Statistical Approaches to Metabolomics Research. J Sep Sci. 32, 2183-99 (2009). 50. Mamas M, Dunn WB, Neyses L, Goodacre R. The Role of Metabolites and Metabolomics in Clinically Applicable Biomarkers of Disease. Arch Toxicol. 85, 5-17 (2011). 51. Blekherman G, Laubenbacher R, Cortes DF, Mendes P, Torti FM, Akman S, et al. Bioinformatics Tools for Cancer Metabolomics. Metabolomics. 7, 329-43 (2011). 52. Jaitly N, Mayampurath A, Littlefield K, Adkins JN, Anderson GA, Smith RD. Decon2ls: An Open-Source Software Package for Automated Processing and Visualization of High Resolution Mass Spectrometry Data. BMC Bioinformatics. 10, 87 (2009). 53. Sugimoto M, Hirayama A, Ishikawa T, Robert M, Baran R, Uehara K, et al. Differential Metabolomics Software for Capillary Electrophoresis-Mass Spectrometry Data Analysis. Metabolomics. 6, 27-41 (2010). 54. Scalbert A, Brennan L, Fiehn O, Hankemeier T, Kristal BS, van Ommen B, et al. Mass-Spectrometry-Based Metabolomics: Limitations and Recommendations for Future Progress with Particular Focus on Nutrition Research. Metabolomics. 5, 435-58 (2009). 55. Smith CA, Want EJ, O'Maille G, Abagyan R, Siuzdak G. Xcms: Processing Mass Spectrometry Data for Metabolite Profiling Using Nonlinear Peak Alignment, Matching, and Identification. Anal Chem. 78, 779-87 (2006). 56. Lommen A. Metalign: Interface-Driven, Versatile Metabolomics Tool for Hyphenated Full-Scan Mass Spectrometry Data Preprocessing. Anal Chem. 81, 3079-86 (2009). 57. Pluskal T, Castillo S, Villar-Briones A, Oresic M. Mzmine 2: Modular Framework for Processing, Visualizing, and Analyzing Mass Spectrometry-Based Molecular Profile Data. BMC Bioinformatics. 11, 395 (2010). 58. Kenar E, Franken H, Forcisi S, Wormann K, Haring HU, Lehmann R, et al. Automated Label-Free Quantification of Metabolites from Liquid Chromatography-Mass Spectrometry Data. Mol Cell Proteomics. 13, 348-59 (2014). 59. Aberg KM, Torgrip RJ, Kolmert J, Schuppe-Koistinen I, Lindberg J. Feature Detection and Alignment of Hyphenated Chromatographic-Mass Spectrometric Data. Extraction of Pure Ion Chromatograms Using Kalman Tracking. J Chromatogr A. 1192, 139-46 (2008). 60. Sugimoto M, Kawakami M, Robert M, Soga T, Tomita M. Bioinformatics Tools for Mass Spectroscopy-Based Metabolomic Data Processing and Analysis. Curr Bioinform. 7, 96-108 (2012). 61. Tautenhahn R, Bottcher C, Neumann S. Highly Sensitive Feature Detection for High Resolution Lc/Ms. BMC Bioinformatics. 9, 504 (2008). 62. Kuhl C, Tautenhahn R, Bottcher C, Larson TR, Neumann S. Camera: An Integrated Strategy for Compound Spectra Extraction and Annotation of Liquid Chromatography/Mass Spectrometry Data Sets. Anal Chem. 84, 283-9 (2012). 63. Cleveland WS. Robust Locally Weighted Regression and Smoothing Scatterplots. Journal of the American Statistical Association. 74, 829-36 (1979). 64. Cleveland WS. Lowess - a Program for Smoothing Scatterplots by Robust Locally Weighted Regression. American Statistician. 35, 54- (1981). 65. Matsuda F, Yonekura-Sakakibara K, Niida R, Kuromori T, Shinozaki K, Saito K. Ms/Ms Spectral Tag-Based Annotation of Non-Targeted Profile of Plant Secondary Metabolites. Plant J. 57, 555-77 (2009). 66. Katajamaa M, Oresic M. Data Processing for Mass Spectrometry-Based Metabolomics. J Chromatogr A. 1158, 318-28 (2007). 67. Keller BO, Sui J, Young AB, Whittal RM. Interferences and Contaminants Encountered in Modern Mass Spectrometry. Anal Chim Acta. 627, 71-81 (2008). 68. Tolstikov VV, Lommen A, Nakanishi K, Tanaka N, Fiehn O. Monolithic Silica-Based Capillary Reversed-Phase Liquid Chromatography/Electrospray Mass Spectrometry for Plant Metabolomics. Anal Chem. 75, 6737-40 (2003). 69. Wishart DS, Jewison T, Guo AC, Wilson M, Knox C, Liu Y, et al. Hmdb 3.0--the Human Metabolome Database in 2013. Nucleic Acids Res. 41, D801-7 (2013). 70. Matsuda F, Hirai MY, Sasaki E, Akiyama K, Yonekura-Sakakibara K, Provart NJ, et al. Atmetexpress Development: A Phytochemical Atlas of Arabidopsis Development. Plant Physiol. 152, 566-78 (2010). 71. Lynn KS, Cheng ML, Chen YR, Hsu C, Chen A, Lih TM, et al. Metabolite Identification for Mass Spectrometry-Based Metabolomics Using Multiple Types of Correlated Ion Information. Anal Chem. 87, 2143-51 (2015). 72. Geromanos SJ, Vissers JPC, Silva JC, Dorschel CA, Li GZ, Gorenstein MV, et al. The Detection, Correlation, and Comparison of Peptide Precursor and Product Ions from Data Independent Lc-Ms with Data Dependant Lc-Ms/Ms. Proteomics. 9, 1683-95 (2009). 73. Wong JWH, Schwahn AB, Downard KM. Etiseq - an Algorithm for Automated Elution Time Ion Sequencing of Concurrently Fragmented Peptides for Mass Spectrometry-Based Proteomics. Bmc Bioinformatics. 10, (2009). 74. Gillet LC, Navarro P, Tate S, Rost H, Selevsek N, Reiter L, et al. Targeted Data Extraction of the Ms/Ms Spectra Generated by Data-Independent Acquisition: A New Concept for Consistent and Accurate Proteome Analysis. Molecular & Cellular Proteomics. 11, (2012). 75. Kessner D, Chambers M, Burke R, Agusand D, Mallick P. Proteowizard: Open Source Software for Rapid Proteomics Tools Development. Bioinformatics. 24, 2534-6 (2008). 76. Eidhammer I, Flikka, K., Martens, L., Mikalsen, S. Computational Methods for Mass Spectrometry Proteomics: John Wiley & Sons Inc.; 2007. 77. Reiter L, Rinner O, Picotti P, Huttenhain R, Beck M, Brusniak MY, et al. Mprophet: Automated Data Processing and Statistical Validation for Large-Scale Srm Experiments. Nat Methods. 8, 430-U85 (2011). 78. Schluesener D, Fischer F, Kruip J, Rogner M, Poetsch A. Mapping the Membrane Proteome of Corynebacterium Glutamicum. Proteomics. 5, 1317-30 (2005). 79. Ma ZQ, Chambers MC, Ham AJL, Cheek KL, Whitwell CW, Aerni HR, et al. Scanranker: Quality Assessment of Tandem Mass Spectra Via Sequence Tagging. Journal of Proteome Research. 10, 2896-904 (2011). 80. Seol Y, Hardin AH, Strub MP, Charvin G, Neuman KC. Comparison of DNA Decatenation by Escherichia Coli Topoisomerase Iv and Topoisomerase Iii: Implications for Non-Equilibrium Topology Simplification. Nucleic Acids Research. 41, 4640-9 (2013). 81. Li C, Zhang Y, Vankemmelbeke M, Hecht O, Aleanizy FS, Macdonald C, et al. Structural Evidence That Colicin a Protein Binds to a Novel Binding Site of Tola Protein in Escherichia Coli Periplasm. Journal of Biological Chemistry. 287, 19048-57 (2012). 82. Legrain P, Aebersold R, Archakov A, Bairoch A, Bala K, Beretta L, et al. The Human Proteome Project: Current State and Future Direction. Mol Cell Proteomics. 10, M111 009993 (2011). 83. Lane L, Argoud-Puy G, Britan A, Cusin I, Duek PD, Evalet O, et al. Nextprot: A Knowledge Platform for Human Proteins. Nucleic Acids Res. 40, D76-83 (2012). 84. Beck M, Claassen M, Aebersold R. Comprehensive Proteomics. Curr Opin Biotechnol. 22, 3-8 (2011). 85. Farrah T, Deutsch EW, Hoopmann MR, Hallows JL, Sun Z, Huang CY, et al. The State of the Human Proteome in 2012 as Viewed through Peptideatlas. Journal of Proteome Research. 12, 162-71 (2013). 86. Shiromizu T, Adachi J, Watanabe S, Murakami T, Kuga T, Muraoka S, et al. Identification of Missing Proteins in the Nextprot Database and Unregistered Phosphopeptides in the Phosphositeplus Database as Part of the Chromosome-Centric Human Proteome Project. J Proteome Res. 12, 2414-21 (2013). 87. Ezkurdia I, Juan D, Rodriguez JM, Frankish A, Diekhans M, Harrow J, et al. Multiple Evidence Strands Suggest That There May Be as Few as 19 000 Human Protein-Coding Genes. Human Molecular Genetics. 23, 5866-78 (2014). 88. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS, Chaerkady R, et al. A Draft Map of the Human Proteome. Nature. 509, 575-81 (2014). 89. Wilhelm M, Schlegl J, Hahne H, Moghaddas Gholami A, Lieberenz M, Savitski MM, et al. Mass-Spectrometry-Based Draft of the Human Proteome. Nature. 509, 582-7 (2014). 90. Nesvizhskii AI, Aebersold R. Interpretation of Shotgun Proteomic Data: The Protein Inference Problem. Mol Cell Proteomics. 4, 1419-40 (2005). 91. Nesvizhskii AI. A Survey of Computational Methods and Error Rate Estimation Procedures for Peptide and Protein Identification in Shotgun Proteomics. J Proteomics. 73, 2092-123 (2010). 92. Li J, Su ZL, Ma ZQ, Slebos RJC, Halvey P, Tabb DL, et al. A Bioinformatics Workflow for Variant Peptide Detection in Shotgun Proteomics. Molecular & Cellular Proteomics. 10, (2011). 93. Nijveen H, Kester MGD, Hassan C, Viars A, de Ru AH, de Jager M, et al. Hspvdb-the Human Short Peptide Variation Database for Improved Mass Spectrometry-Based Detection of Polymorphic Hla-Ligands. Immunogenetics. 63, 143-53 (2011). 94. Roth MJ, Forbes AJ, Boyne MT, Kim YB, Robinson DE, Kelleher NL. Precise and Parallel Characterization of Coding Polymorphisms, Alternative Splicing, and Modifications in Human Proteins by Mass Spectrometry. Molecular & Cellular Proteomics. 4, 1002-8 (2005). 95. Su ZD, Sun L, Yu DX, Li RX, Li HX, Yu ZJ, et al. Quantitative Detection of Single Amino Acid Polymorphisms by Targeted Proteomics. Journal of Molecular Cell Biology. 3, 309-15 (2011). 96. Alves G, Ogurtsov AY, Yu YK. Raid_Dbs: Mass-Spectrometry Based Peptide Identification Web Server with Knowledge Integration. Bmc Genomics. 9, 505 (2008). 97. Xi H, Park JS, Ding GH, Lee YH, Li YX. Syspimp: The Web-Based Systematical Platform for Identifying Human Disease-Related Mutated Sequences from Mass Spectrometry. Nucleic Acids Research. 37, D913-D20 (2009). 98. Apweiler R, Bairoch A, Wu CH, Barker WC, Boeckmann B, Ferro S, et al. Uniprot: The Universal Protein Knowledgebase. Nucleic Acids Res. 32, D115-9 (2004). 99. Lindskog C. The Potential Clinical Impact of the Tissue-Based Map of the Human Proteome. Expert Rev Proteomics. 12, 213-5 (2015). 100. Farrah T, Deutsch EW, Hoopmann MR, Hallows JL, Sun Z, Huang CY, et al. The State of the Human Proteome in 2012 as Viewed through Peptideatlas. J Proteome Res. 12, 162-71 (2013). 101. Picotti P, Lam H, Campbell D, Deutsch EW, Mirzaei H, Ranish J, et al. A Database of Mass Spectrometric Assays for the Yeast Proteome. Nature Methods. 5, 913-4 (2008). 102. Keil Bi. Specificity of Proteolysis. Berlin ; New York: Springer-Verlag; 1992. ix, 336 p. p. 103. Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. Dbsnp: The Ncbi Database of Genetic Variation. Nucleic Acids Res. 29, 308-11 (2001). 104. Forbes SA, Bindal N, Bamford S, Cole C, Kok CY, Beare D, et al. Cosmic: Mining Complete Cancer Genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 39, D945-50 (2011). 105. Perkins DN, Pappin DJ, Creasy DM, Cottrell JS. Probability-Based Protein Identification by Searching Sequence Databases Using Mass Spectrometry Data. Electrophoresis. 20, 3551-67 (1999). 106. Eng JK, McCormack AL, Yates JR. An Approach to Correlate Tandem Mass Spectral Data of Peptides with Amino Acid Sequences in a Protein Database. J Am Soc Mass Spectrom. 5, 976-89 (1994). 107. Craig R, Beavis RC. Tandem: Matching Proteins with Tandem Mass Spectra. Bioinformatics. 20, 1466-7 (2004). 108. Meyer-Arendt K, Old WM, Houel S, Renganathan K, Eichelberger B, Resing KA, et al. Isoformresolver: A Peptide-Centric Algorithm for Protein Inference. Journal of Proteome Research. 10, 3060-75 (2011). 109. Branca RM, Orre LM, Johansson HJ, Granholm V, Huss M, Perez-Bercoff A, et al. Hirief Lc-Ms Enables Deep Proteome Coverage and Unbiased Proteogenomics. Nature Methods. 11, 59-62 (2014). 110. Burkard TR, Planyavsky M, Kaupe I, Breitwieser FP, Burckstummer T, Bennett KL, et al. Initial Characterization of the Human Central Proteome. BMC Syst Biol. 5, 17 (2011). 111. Rety S, Sopkova-de Oliveira Santos J, Dreyfuss L, Blondeau K, Hofbauerova K, Raguenes-Nicol C, et al. The Crystal Structure of Annexin A8 Is Similar to That of Annexin A3. Journal of Molecular Biology. 345, 1131-9 (2005). 112. Swaney DL, Wenger CD, Coon JJ. Value of Using Multiple Proteases for Large-Scale Mass Spectrometry-Based Proteomics. J Proteome Res. 9, 1323-9 (2010). 113. Wisniewski JR, Mann M. Consecutive Proteolytic Digestion in an Enzyme Reactor Increases Depth of Proteomic and Phosphoproteomic Analysis. Anal Chem. 84, 2631-7 (2012). 114. Guo X, Trudgian DC, Lemoff A, Yadavalli S, Mirzaei H. Confetti: A Multiprotease Map of the Hela Proteome for Comprehensive Proteomics. Mol Cell Proteomics. 13, 1573-84 (2014). 115. Chen Q, Yan G, Zhang X. Applying Multiple Proteases to Direct Digestion of Hundred-Scale Cell Samples for Proteome Analysis. Rapid Commun Mass Spectrom. 29, 1389-94 (2015). 116. Giansanti P, Aye TT, van den Toorn H, Peng M, van Breukelen B, Heck AJ. An Augmented Multiple-Protease-Based Human Phosphopeptide Atlas. Cell Rep. 11, 1834-43 (2015). 117. Apweiler R, Attwood TK, Bairoch A, Bateman A, Birney E, Biswas M, et al. Interpro - an Integrated Documentation Resource for Protein Families, Domains and Functional Sites. Bioinformatics. 16, 1145-50 (2000). 118. Frumin I, Sobel N, Gilad Y. Does a Unique Olfactory Genome Imply a Unique Olfactory World? Nature Neuroscience. 17, 6-8 (2014). 119. Hasin-Brumshtein Y, Lancet D, Olender T. Human Olfaction: From Genomic Variation to Phenotypic Diversity. Trends in Genetics. 25, 178-84 (2009). 120. Mainland JD, Keller A, Li YR, Zhou T, Trimmer C, Snyder LL, et al. The Missense of Smell: Functional Variability in the Human Odorant Receptor Repertoire. Nature Neuroscience. 17, 114-20 (2014). 121. Olender T, Waszak SM, Viavant M, Khen M, Ben-Asher E, Reyes A, et al. Personal Receptor Repertoires: Olfaction as a Model. BMC Genomics. 13, (2012). 122. Woo S, Cha SW, Merrihew G, He Y, Castellana N, Guest C, et al. Proteogenomic Database Construction Driven from Large Scale Rna-Seq Data. J Proteome Res. 13, 21-8 (2014). 123. Wang X, Zhang B. Customprodb: An R Package to Generate Customized Protein Databases from Rna-Seq Data for Proteomics Search. Bioinformatics. 29, 3235-7 (2013). 124. Sheynkman GM, Shortreed MR, Frey BL, Scalf M, Smith LM. Large-Scale Mass Spectrometric Detection of Variant Peptides Resulting from Nonsynonymous Nucleotide Differences. J Proteome Res. 13, 228-40 (2014). 125. Wang X, Slebos RJ, Wang D, Halvey PJ, Tabb DL, Liebler DC, et al. Protein Identification Using Customized Protein Sequence Databases Derived from Rna-Seq Data. J Proteome Res. 11, 1009-17 (2012). 126. Nesvizhskii AI. Proteogenomics: Concepts, Applications and Computational Strategies. Nature Methods. 11, 1114-25 (2014). 127. Neuhaus EM, Zhang W, Gelis L, Deng Y, Noldus J, Hatt H. Activation of an Olfactory Receptor Inhibits Proliferation of Prostate Cancer Cells. Journal of Biological Chemistry. 284, 16218-25 (2009). 128. Spehr M, Gisselmann G, Poplawski A, Riffell JA, Wetzel CH, Zimmer RK, et al. Identification of a Testicular Odorant Receptor Mediating Human Sperm Chemotaxis. Science. 299, 2054-8 (2003). 129. Kang N, Kim H, Jae Y, Lee N, Ku CR, Margolis F, et al. Olfactory Marker Protein Expression Is an Indicator of Olfactory Receptor-Associated Events in Non-Olfactory Tissues. Plos One. 10, e0116097 (2015). 130. Sanz G, Leray I, Dewaele A, Sobilo J, Lerondel S, Bouet S, et al. Promotion of Cancer Cell Invasiveness and Metastasis Emergence Caused by Olfactory Receptor Stimulation. PLoS One. 9, e85110 (2014). 131. Weng J, Wang J, Hu X, Wang F, Ittmann M, Liu M. Psgr2, a Novel G-Protein Coupled Receptor, Is Overexpressed in Human Prostate Cancer. Int J Cancer. 118, 1471-80 (2006). 132. Xu LL, Stackhouse BG, Florence K, Zhang W, Shanmugam N, Sesterhenn IA, et al. Psgr, a Novel Prostate-Specific Gene with Homology to a G Protein-Coupled Receptor, Is Overexpressed in Prostate Cancer. Cancer Res. 60, 6568-72 (2000). 133. Flegel C, Manteniotis S, Osthold S, Hatt H, Gisselmann G. Expression Profile of Ectopic Olfactory Receptors Determined by Deep Sequencing. Plos One. 8, e55368 (2013). 134. Ezkurdia I, Vazquez J, Valencia A, Tress M. Analyzing the First Drafts of the Human Proteome. Journal of Proteome Research. (2014). 135. Kyte J, Doolittle RF. A Simple Method for Displaying the Hydropathic Character of a Protein. Journal of Molecular Biology. 157, 105-32 (1982). 136. Fu LM, Niu BF, Zhu ZW, Wu ST, Li WZ. Cd-Hit: Accelerated for Clustering the Next-Generation Sequencing Data. Bioinformatics. 28, 3150-2 (2012). 137. Rost HL, Rosenberger G, Navarro P, Gillet L, Miladinovic SM, Schubert OT, et al. Openswath Enables Automated, Targeted Analysis of Data-Independent Acquisition Ms Data. Nature Biotechnology. 32, 219-23 (2014).
|