|
[1] REN21, “Renewables 2011 Global Status Report, 2011.
[2] The World Wind Energy Association, “Half Year Report 2011, 2011.
[3] M. D. Esteban, J. J. Diez, J. S. López, and V. Negro, “Why offshore wind energy?, Renewable Energy, vol. 36, no. 2, pp. 444-450, Feb. 2011.
[4] C. N. Bhende, S. Mishra, and S. G. Malla, “Permanent Magnet Synchronous Generator-Based Standalone Wind Energy Supply System, IEEE Transactions on Sustainable Energy, vol. 2, no. 4, pp. 361-373, Oct. 2011.
[5] Q. Li, S. S. Choi, Y. Yuan, and D. L. Yao, “On the Determination of Battery Energy Storage Capacity and Short-Term Power Dispatch of a Wind Farm, IEEE Transactions on Sustainable Energy, vol. 2, no. 2, pp. 148-158, Apr. 2011.
[6] Y.-H. Kim, S.-H. Kim, C.-J. Lim, S. H. Kim, and B.-K. Kwon, “Control Strategy of Energy Storage System for Power Stability in a Wind Farm, in 8th International Conference on Power Electronics and ECCE Asia (ICPE & ECCE), IEEE, 2011, pp. 2970-2973.
[7] T. K. A. Brekken, A. Yokochi, A. von Jouanne, Z. Z. Yen, H. M. Hapke, and D. A. Halamay, “Optimal Energy Storage Sizing and Control for Wind Power Applications, IEEE Transactions on Sustainable Energy, vol. 2, no. 1, pp. 69–77, Jan. 2010.
[8] R. Dufo Lopez, J. Bernal Agustin, and J. Contreras, “Optimization of control strategies for stand-alone renewable energy systems with hydrogen storage, Renewable Energy, vol. 32, no. 7, pp. 1102-1126, Jun. 2007.
[9] K. Agbossou, M. Kolhe, J. Hamelin, and T. K. Bose, “Performance of a Stand- Alone Renewable Energy System Based on Energy Storage as Hydrogen, IEEE Transactions on Energy Conversion, vol. 19, no. 3, pp. 633-640, Sep. 2004.
[10] N. Gyawali and Y. Ohsawa, “Integrating Fuel Cell/Electrolyzer/Ultracapacitor System Into a Stand-Alone Microhydro Plant, IEEE Transactions on Energy Conversion, vol. 25, no. 4, pp. 1092-1101, Dec. 2010.
[11] S. M. Muyeen, R. Takahashi, and J. Tamura, “Electrolyzer switching strategy for hydrogen generation from variable speed wind generator, Electric Power Systems Research, vol. 81, no. 5, pp. 1171-1179, May 2011.
[12] Z. Chen, J. M. Guerrero, and F. Blaabjerg, “A Review of the State of the Art of Power Electronics for Wind Turbines, IEEE Transactions on Power Electronics, vol. 24, no. 8, pp. 1859-1875, Aug. 2009. [13] M. Ragheb, “Control of Wind Turbines, 2008.
[14] E. Hau, Wind Turbines, 2nd Editio. Berlin/Heidelberg: Springer-Verlag, 2006. [15] National Instruments, “Wind turbine control methods, Dec. 2008. [16] A. D. Hansen and L. H. Hansen, “Wind turbine concept market penetration over 10 years (1995–2004), Wind energy, vol. 10, no. 1, pp. 81–97, 2007.
[17] H. Polinder, D. J. Bang, H. Li, and Z. Chen, “Concept report on generator topologies, mechanical & electromagnetic optimization, 2007.
[18] W. E. Leithead and B. Connor, “Control of variable speed wind turbines: Design task, International Journal of Control, vol. 73, no. 13, pp. 1189-1212, Jan. 2000.
[19] T. Burton, D. Sharpe, N. Jenkins, and E. Bossanyi, Wind Energy Handbook. Chichester, UK: John Wiley & Sons, Ltd, 2001.
[20] H. Polinder, F. F. a. van der Pijl, G.-J. de Vilder, and P. Tavner, “Comparison of direct-drive and geared generator concepts for wind turbines, IEEE International Conference on Electric Machines and Drives, 2005., pp. 543-550, 2005.
[21] W. Musial and S. Butterfield, “Future for offshore wind energy in the United States, EnergyOcean Proceedings, June 2004, Palm Beach Florida, USA, no. June, pp. 500–36313, 2004.
[22] M. Junginger, “Cost reduction prospects for the offshore wind energy sector, Wind Energy Conference & Exhibition, no. 0, pp. 1-12, 2003.
[23] S. M. Muyeen, R. Takahashi, and J. Tamura, “Operation and Control of HVDC- Connected Offshore Wind Farm, IEEE Transactions on Sustainable Energy, vol. 1, no. 1, pp. 30-37, Apr. 2010.
[24] J. Conroy and R. Watson, “Aggregate modelling of wind farms containing full- converter wind turbine generators with permanent magnet synchronous machines: transient stability studies, Renewable Power Generation, IET, vol. 3, no. 1, pp. 39–52, 2009.
[25] A. Tuzuner, “Wind speed modeling and energy production simulation with Weibull sampling, in 2008 IEEE Power and Energy Society General Meeting - Conversion and Delivery of Electrical Energy in the 21st Century, 2008, pp. 1-6.
[26] J. F. Manwell, J. G. McGowan, and A. L. Rogers, Wind Energy Explained. Chichester, UK: John Wiley & Sons, Ltd, 2002.
[27] A. Jha, Ph.D., Wind Turbine Technology. CRC Press, 2010, pp. 31-78.
[28] J. G. Slootweg, S. W. H. de Haan, H. Polinder, and W. L. Kling, “General model for representing variable speed wind turbines in power system dynamics simulations, IEEE Transactions on Power Systems, vol. 18, no. 1, pp. 144-151, Feb. 2003.
[29] C.-J. Chang, “Controllable Wind Generation System Realized by Energy Storage Equipment, National Cheng Kung University, 2010.
[30] R. Scott Semken et al., “Direct-drive permanent magnet generators for high-power wind turbines: benefits and limiting factors, IET Renewable Power Generation, vol. 6, no. 1, p. 1, 2012.
[31] K. Tan and S. Islam, “Optimum Control Strategies in Energy Conversion of PMSG Wind Turbine System Without Mechanical Sensors, Energy, vol. 19, no. 2, pp. 392-399, 2004.
[32] M. Yin, G. Li, M. Zhou, and C. Zhao, “Modeling of the Wind Turbine with a Permanent Magnet Synchronous Generator for Integration, in 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1-6.
[33] N. P. W. Strachan and D. Jovcic, “Dynamic Modelling, Simulation and Analysis of an Offshore Variable-Speed Directly-Driven Permanent-Magnet Wind Energy Conversion and Storage System (WECSS), in OCEANS 2007 - Europe, 2007, no. 0, pp. 1-6.
[34] A. F. Zobaa and B. Ramesh, Handbook of Renewable Energy Technology. World Scientific, 2011.
[35] S. M. Muyeen, R. Takahashi, T. Murata, and J. Tamura, “A Variable Speed Wind Turbine Control Strategy to Meet Wind Farm Grid Code Requirements, IEEE Transactions on Power Systems, vol. 25, no. 1, pp. 331-340, Feb. 2010.
[36] A. Yazdani and R. Iravani, “A Neutral-Point Clamped Converter System for Direct- Drive Variable-Speed Wind Power Unit, IEEE Transactions on Energy Conversion, vol. 21, no. 2, pp. 596-607, Jun. 2006.
[37] A. Nabae, I. Takahashi, and H. Akagi, “A New Neutral-Point-Clamped PWM Inverter, IEEE Transactions on Industry Applications, vol. IA–17, no. 5, pp. 518-523, Sep. 1981.
[38] N. R. Chaudhuri and A. Yazdani, “An aggregation scheme for offshore wind farms with VSC-based HVDC collection system, in 2011 IEEE Power and Energy Society General Meeting, 2011, pp. 1-8.
[39] N. M. Kirby, “HVDC transmission for large offshore windfarms, in Seventh International Conference on AC and DC Transmission, 2001, vol. 2001, no. June, pp. 162-168.
[40] A. Yazdani and R. Iravani, “Dynamic Model and Control of the NPC-Based Back- to-Back HVDC System, IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 414-424, Jan. 2006.
[41] E. Spahic, G. Balzer, B. Hellmich, and W. Munch, “Wind Energy Storages - Possibilities, in 2007 IEEE Lausanne Power Tech, 2007, pp. 615-620.
[42] H. Ibrahim, a Ilinca, and J. Perron, “Energy storage systems—Characteristics and comparisons, Renewable and Sustainable Energy Reviews, vol. 12, no. 5, pp. 1221-1250, Jun. 2008.
[43] R. E. Clarke, S. Giddey, F. T. Ciacchi, S. P. S. Badwal, B. Paul, and J. Andrews, “Direct coupling of an electrolyser to a solar PV system for generating hydrogen, International Journal of Hydrogen Energy, vol. 34, no. 6, pp. 2531-2542, Mar. 2009.
[44] O. Ulleberg, “Modeling of advanced alkaline electrolyzers: a system simulation approach, International Journal of Hydrogen Energy, vol. 28, no. 1, pp. 21-33, Jan. 2003.
[45] P. Artuso, F. Zuccari, A. Dell’Era, and F. Orecchini, “PV-Electrolyzer Plant: Models and Optimization Procedure, Journal of Solar Energy Engineering, vol. 132, no. 3, p. 031016, 2010.
[46] T. Zhou and B. Francois, “Modeling and control design of hydrogen production process for an active hydrogen/wind hybrid power system, International Journal of Hydrogen Energy, vol. 34, no. 1, pp. 21-30, Jan. 2009.
[47] F. J. Pino, L. Valverde, and F. Rosa, “Influence of wind turbine power curve and electrolyzer operating temperature on hydrogen production in wind–hydrogen systems, Journal of Power Sources, vol. 196, no. 9, pp. 4418-4426, May 2011.
[48] a. Kirubakaran, S. Jain, and R. K. Nema, “A review on fuel cell technologies and power electronic interface, Renewable and Sustainable Energy Reviews, vol. 13, no. 9, pp. 2430-2440, Dec. 2009.
[49] P. Sethakul, S. Rael, B. Davat, and P. Thounthong, “Fuel cell high-power applications, IEEE Industrial Electronics Magazine, vol. 3, no. 1, pp. 32-46, Mar. 2009.
[50] A. T-Raissi, “Current technology of fuel cell systems, in IECEC-97 Proceedings of the Thirty-Second Intersociety Energy Conversion Engineering Conference (Cat. No.97CH6203), 1992, vol. 3, pp. 1953-1957.
[51] I. Ballard Power Systems, “Fuel Cell Distributed Generation - 1MW, 2012. [Online]. Available: http://www.ballard.com/.
[52] K. Rajashekara, “Hybrid fuel-cell strategies for clean power generation, Industry Applications, IEEE Transactions on, vol. 41, no. 3, pp. 682-689, 2005.
[53] J. M. Correa, F. A. Farret, L. N. Canha, and M. G. Simoes, “An Electrochemical- Based Fuel-Cell Model Suitable for Electrical Engineering Automation Approach, IEEE Transactions on Industrial Electronics, vol. 51, no. 5, pp. 1103-1112, Oct. 2004.
[54] R. F. Mann, J. C. Amphlett, M. a. I. Hooper, H. M. Jensen, B. a. Peppley, and P. R. Roberge, “Development and application of a generalised steady-state electrochemical model for a PEM fuel cell, Journal of Power Sources, vol. 86, no. 1–2, pp. 173-180, Mar. 2000.
[55] P. R. Pathapati, X. Xue, and J. Tang, “A new dynamic model for predicting transient phenomena in a PEM fuel cell system, Renewable Energy, vol. 30, no. 1, pp. 1-22, Jan. 2005.
[56] P. T. Nguyen, T. Berning, and N. Djilali, “Computational model of a PEM fuel cell with serpentine gas flow channels, Journal of Power Sources, vol. 130, no. 1–2, pp. 149-157, May 2004.
[57] J. Larminie and A. Dicks, “Fuel cell systems explained, Fuel Cells Bulletin, vol. 2, no. 7, pp. 6-8, Apr. 2003.
[58] A. Züttel, “Materials for hydrogen storage, Materials Today, vol. 6, no. 9, pp. 24-33, Sep. 2003.
[59] M. Hirscher, Handbook of Hydrogen Storage. Weinheim, Germany: Wiley-VCH Verlag GmbH & Co. KGaA, 2010.
[60] R. Niu and H. Yang, “Modeling and identification of electric double-layer supercapacitors, in 2011 IEEE International Conference on Robotics and Automation, 2011, pp. 1-4.
[61] H. Gualous, D. Bouquain, a. Berthon, and J. M. Kauffmann, “Experimental study of supercapacitor serial resistance and capacitance variations with temperature, Journal of Power Sources, vol. 123, no. 1, pp. 86-93, Sep. 2003.
[62] R. Bonert, “Characterization of Double-Layer Capacitors (DLCs) for Power Electronics Applications, Computer Engineering, pp. 1149-1154, 1998.
[63] L. Zubieta and R. Bonert, “Characterization of double-layer capacitors for power electronics applications, IEEE Transactions on Industry Applications, vol. 36, no. 1, pp. 199-205, 2000.
[64] I. D. Oltean, A. M. Matoi, and E. Helerea, “A supercapacitor stack - design and characteristics, in 2010 12th InternationalConference on Optimization of Electrical and Electronic Equipment, 2010, no. 2, pp. 214-219.
[65] S. a. Sherif, F. Barbir, and T. N. Veziroglu, “Wind energy and the hydrogen economy—review of the technology, Solar Energy, vol. 78, no. 5, pp. 647-660, May 2005.
[66] J. G. Slootweg and W. L. Kling, “Modeling of large wind farms in power system simulations, in IEEE Power Engineering Society Summer Meeting,, 2002, vol. 1, pp. 503-508.
[67] T. H. M. El-Fouly, E. F. El-Saadany, and M. M. a. Salama, “Grey Predictor for Wind Energy Conversion Systems Output Power Prediction, IEEE Transactions on Power Systems, vol. 21, no. 3, pp. 1450-1452, Aug. 2006.
[68] L. Landberg, “Short-term prediction of the power production from wind farms, Journal of Wind Engineering and Industrial Aerodynamics, vol. 80, no. 1–2, pp. 207-220, Mar. 1999.
|