跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/28 08:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:劉怡旻
研究生(外文):Liu I-Min
論文名稱:中藥升麻酸降血糖作用之研究
論文名稱(外文):Antihyperglycemic Mechanisms of a Natural Product, Isoferulic Acid
指導教授:鄭 瑞 棠
指導教授(外文):Cheng Juei-Tang
學位類別:博士
校院名稱:國立成功大學
系所名稱:基礎醫學研究所
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2001
畢業學年度:89
語文別:中文
中文關鍵詞:糖尿病升麻酸嗎啡m型受體腎上腺髓質C2C12 小鼠肌母細胞腦內 啡葡萄糖第四型轉移蛋白骨骼肌
外文關鍵詞:diabetesisoferulic acidopioid m-receptoradrenal medullac2c12 cellendorphinglucose transporter subtype 4 formskeletal muscle
相關次數:
  • 被引用被引用:4
  • 點閱點閱:703
  • 評分評分:
  • 下載下載:104
  • 收藏至我的研究室書目清單書目收藏:2
糖尿病的病患比率在我國日漸增高,因此,研究開發糖尿病的治療藥乃為當日之主要課題。民間常用的「補中益氣湯」具有改善糖尿病的效果,「升麻」 (Cimicifuga rhizoma)即是組成「補中益氣湯」的中藥材之一。本實驗針對升麻根莖的抽取物「升麻酸」(isoferulic acid)進行降血糖機轉的探討,期望助益於降血糖新藥之研發。
首先,將升麻酸自股靜脈注射不同劑量到遺傳性胰島素依賴型糖尿病大白鼠(Bio—Breeding/Worcester rats; BB/W rats)或用streptozotocin (STZ)誘導的胰島素依賴型糖尿病(insulin dependent diabetic mellitus; IDDM)大白鼠。升麻酸隨著劑量的增加,使兩種胰島素依賴型糖尿病大白鼠的血糖值下降得更強。可是,在胰島素非依賴型(non-insulin dependent diabetic mellitus; NIDDM)大白鼠,升麻酸則需在較大的劑量及較長的作用時間,才會出現顯著的降血糖作用。另外,使用外來葡萄糖所進行的刺激試驗(glucose challenge test),升麻酸確可增加大白鼠對葡萄糖的利用率。
接下來以C2C12 小鼠肌母細胞(mouse myoblast cell line)進行體外實驗以確定升麻酸的作用受體。發現,升麻酸能以劑量相關的方式來增強C2C12 肌母細胞對葡萄糖的吸回;這項作用可被a1A-adrenoceptor (a1A-AR) 的阻斷劑所解消。同時,升麻酸隨著濃度的增高可漸進地取代a1-AR 的ligand,[3H]YM617,於C2C12 肌母細胞的結合。另一方面,以phospholipase C (PLC)及protein kinase C (PKC)的阻斷劑將a1A-AR活化後有關的訊息傳遞路徑阻斷後,亦可解消升麻酸增強C2C12肌母細胞對葡萄糖吸回的作用。進一步以STZ糖尿病大白鼠進行體內實驗,發現,a1A-AR 的阻斷劑亦會依劑量相關的型式阻斷升麻酸在胰島素依賴型糖尿病老鼠所產生的降血糖效果。因此,在沒有胰島素存在的情況下,a1A-AR的活化與升麻酸產生降血糖作用有重要的相互關係。
在胰島素依賴型糖尿病大白鼠引致降血糖效果的有效劑量下,升麻酸亦能同時增加STZ糖尿病大白鼠血中b-endorphin的含量;這項作用可被a1A-AR阻斷劑所拮抗。另一方面,外加的b-endorphin確能增強STZ糖尿病大白鼠離體的骨骼肌及肝細胞(hepatocytes)對葡萄糖的吸回作用。而且,嗎啡m型受體阻斷劑亦會以劑量相關的型式阻斷升麻酸在STZ糖尿病大白鼠的降血糖效果。同時,在嗎啡m型受體剔除(opioid m-receptors knockout)的胰島素依賴型糖尿病小鼠,升麻酸也無法出現降血糖的作用。因此,升麻酸在胰島素依賴型糖尿病老鼠所產生的降血糖作用,嗎啡m型受體的活化應扮演著重要的角色。
在STZ糖尿病大白鼠離體的腎上腺髓質(adrenal medulla),升麻酸會隨著劑量的增加來促進b-endorphin的釋放;這項作用可被a1A-AR或 PLC、PKC的阻斷劑所抑制。相對於控制組(sham-operation),靜脈注射給予升麻酸至兩側腎上腺已摘除(bilateral adrenalectomy)的糖尿病大白鼠身上,血中b-endorphin的含量並無改變,且仍維持在高血糖的狀態。由此可知,升麻酸乃藉由活化腎上腺的a1A-AR來促使b-endorphin釋放才得到降血糖效果。
為了進一步瞭解升麻酸降血糖的分子作用機轉,使用升麻酸在胰島素依賴型糖尿病老鼠能產生降血糖作用的有效劑量,以尾靜脈注射給藥的方式,每日注射三次到STZ誘導的糖尿病大白鼠。連續一日注射後,升麻酸可明顯地降低大白鼠的血糖值之外,亦可增強STZ糖尿病大白鼠骨骼肌之葡萄糖第四型轉移蛋白(glucose transporter subtype 4 form; GLUT4) mRNA及蛋白的表現。同時,升麻酸可降低STZ糖尿病大白鼠肝臟之解糖酵素(phosphoenolpyruvate carboxykinase; PEPCK) mRNA及蛋白的表現量。若先處理a1A-AR 或嗎啡m型受體的阻斷劑,升麻酸則無法再出現上述的作用。
綜合以上的結果可知,在胰島素依賴型糖尿病大白鼠,升麻酸的降血糖作用主要是藉由活化位於腎上腺髓質的a1A-AR,啟動PLC-PKC這條訊息傳遞路徑來加強腎上腺髓質釋放b-endorphin的能力。釋出的b-endorphin會作用於周邊組織的嗎啡m型受體,藉以增強糖尿病大白鼠骨骼肌對葡萄糖的吸回,配合肝臟的糖新生能力減弱,因而降低了糖尿病大白鼠的高血糖現象。
Diabetes mellitus (DM) is one of the serious disorders around the world. Cimicifuga rhizoma is contained in the prescription of “Bu-Zhong-I-Chi-Tang”, a medication to be effective for the handling of DM in traditional Chinese medicine. Isoferulic acid is one of the active prinicles in Cimicifuga rhizoma. The present study is performed to investigate the antihyperglycemic action of isoferulic acid.
A dose-dependent lowering of plasma glucose was obtained in the fasting rats with insulin dependent DM, both Bio—Breeding/Worcester rats and steptozotocin-induced diabetic rats (STZ-diabetic rats). However, plasma glucose levels in normal and non-insulin dependent DM rats can be lowered by isoferulic acid at a higher dose. Isoferulic acid at the effective dose significantly attenuated the increase of plasma glucose induced by intravenous glucose challenge test in Wistar rats.
Isoferulic acid enhanced the uptake of radioactive glucose into mouse myoblast cells, C2C12 cells, in a concentration-dependent manner. Effect of isoferulic acid on a1-adrenoceptors was supported by the displacement of [3H]YM617 binding in C2C12 cells. The action of isoferulic acid to enhance the uptake of radioactive glucose was abolished in C2C12 cells pre-incubated with the antagonist at concentrations sufficient to block a1A-adrenoceptor (a1A-AR). The plasma glucose lowering effect of isoferulic acid in the STZ-diabetic rats was also abolished by pretreatment with a1A-AR antagonists. Pharmacological inhibition of phospholipase C (PLC) resulted in a concentration-dependent reduction of the isoferulic acid-stimulated uptake of radioactive glucose into C2C12 cells. Moreover, chelerythrine and GF 109203X diminished the action of isoferulic acid at concentration sufficient to inhibit protein kinase C (PKC).The obtained data suggest that activation of a1A-AR may play an important role in the plasma glucose lowering activity of isoferulic acid in the absence of insulin.
Injection of isoferulic acid at the effective dose increased the plasma b-endorphin-like immunoreactivity (BER) in STZ-diabetic rats that can be abolished by a1A-AR. Treatment with b-endorphin enhanced the uptake of radioactive glucose in a concentration-dependent manner in skeletal muscle and hepatocytes isolated from STZ-diabetic rats. The plasma glucose lowering effect of isoferulic acid was also abolished by pretreatment with naloxone or naloxonazine at doses sufficient to block opioid m-receptors. Plasma glucose lowering action of isoferulic acid disappeared in opioid m-receptors knockout mice, while the plasma glucose lowering response to isoferulic acid was still observed in wild-type mice. Mediation of opioid m-receptors in the plasma glucose lowering action of isoferulic acid can thus be considered.
In addition, isoferulic acid enhanced the BER secretion from isolated adrenal medulla of STZ-diabetic rats in a concentration-dependent manner and the antagonists of a1A-AR abolished this action. In the presence of PLC inhibitor, isoferulic acid-induced change of BER was reduced in a concentration-dependent manner. Moreover, pharmacological inhibition of PKC diminished this action of isoferulic acid. Bilateral adrenalectomy made the loss of the plasma glucose lowering action of isoferulic acid and no increase of plasma BER was obtained in isoferulic acid treated STZ-diabetic rats.
The mRNA and protein levels of glucose transporter subtype 4 form (GLUT4) in skeletal muscle was increased by isoferulic acid after repeated treatment for 1 day in STZ-diabetic rats. Otherwise, similar repeated treatment with isoferulic acid reversed the elevated mRNA level of phosphoenolpyruvate carboxykinase (PEPCK) in liver of STZ-diabetic rats to the normal level. Pharmacological inhibition of a1A-AR or opioid m-receptors resulted in the loss of isoferulic acid-induced action.
These results suggest that release of b-endorphin from the adrenal gland seems responsible for the lowering of plasma glucose in STZ-diabetic rats by isoferulic acid through an activation of a1A-AR. Activation of opioid m-receptors by the released b-endorphin can increase the utilization of glucose and/or decrease hepatic gluconeogenesis to lower plasma glucose in diabetic rats lacking insulin.
封面
中文摘要
英文摘要
縮寫指引
第一章 緒論
1. 引言
2. 本論文研究目的
3. 升麻酸的特性
第二章 實驗材料與方法
一、實驗動物及細胞
(一)實驗動物
(二)實驗用細胞株
二、實驗材料
(一)實驗試劑
(二)實驗器材
(三)實驗方法
第三章 升麻酸對胰島素依賴型糖尿病大白鼠的降血糖作用
1. 升麻酸在糖尿病大白鼠的降血糖作用
2. 連續投與升麻酸對胰島素依賴型糖尿病大白鼠血糖的影響
3. 升麻酸與葡萄糖挑戰試驗
4. 升麻酸在糖尿病大白鼠骨骼肌對葡萄糖轉移蛋白基因的影響
5. 升麻酸在糖尿病大白鼠肝臟對葡萄糖新生限制效酵素PEPCK基因的影響
討論
第四章 升麻酸藉由沽化A1a-adrenocepor增強C2c12肌母細胞對葡萄糖吸回的作用
1. 升麻酸在C2C12肌母細胞對葡萄糖吸回作用之影響
2. 升麻酸取代[3H]YM617結合於C2C12肌母細胞的能力
3. a1-AR阻斷劑對升麻酸在C2C12肌母細胞葡萄糖吸回作用之影響
4. Phospholipase C(PLC)或protein kinase C(PKC)的阻斷劑對升麻酸在C2C12肌母細胞葡萄糖吸回作用之影響
討論
第五章 升麻酸藉由活化a1A-adrenoceptor對胰島素依賴型糖尿病大白鼠產生降血糖作用
1. a1A-AR阻斷劑對升麻酸在胰島素依賴型糖尿病大白鼠所產生降血糖作用之影響
2. a1A-AR阻斷劑對升麻酸在糖尿病大白鼠骨骼肌之葡萄糖轉移蛋白基因的影響
3. a1S-AR阻斷劑對升麻酸在胰島素依賴型糖尿病大白鼠肝臟基因的影響
討論
第六章 升麻酸會增強糖尿病大白鼠體內B-endorphin的釋放來產生降血糖作用
1. 升麻酸對糖尿病大白鼠血中B-endorphin濃度之影響
2. a1A-AR阻斷劑對升麻酸在胰島素依賴型糖尿病大白鼠血中B-endorphin濃度之影響
3. 嗎啡u型受體阻斷劑對升麻畯在胰島素依賴型糖尿病大白鼠所產生降血作用之影響
4. 升麻酸在嗎啡u型受體剔除的胰島素依賴型糖尿病小鼠的作用
5. B-endophin在胰島素依賴型糖尿病大白鼠對朋骼肌及肝細胞葡萄糖吸回作用之影響
6. 嗎啡u型受體阻斷劑對升麻酸在糖尿病大白鼠骨骼肌之葡萄糖轉杼蛋白基因的影響
7. 嗎啡u型受體阻斷劑對升麻酸在胰島素依賴型糖尿病大白鼠肝臟PEPCK基因的影響
討論
第七章 升麻酸藉由活化腎上腺髓質的a1A-adrenoceptor來促進B-endophin釋放的作用
1. 升麻酸在離骿腎上腺髓質對釋放B-endorphin之影響
2. a1A-AR阻斷劑對升麻酸在離體腎上腺髓質釋放B-endorphin之影響
3. PCL或PKC阻斷劑對於升麻酸在腎上腺髓質釋放B-endorphin之影響
4. 升麻酸在腎上腺去除的糖尿病大白鼠對血糖及血中B-endorphin之影響
討論
總結
引用文獻
已發表之文獻著作
引用文獻
Akil, H., Watson, S.J.,Young, E., Lewis, M.E., Khachaturian, H. and Walker, J.M. (1984) Endogenous opioid: biology and function. Annu. Rev. Neurosci. 7: 223-255.
Arefolov, V.A., Dmitriev, A.D., Tennov, A.V. and Val’dman, A.V. (1986) Detection of the pro-opiomelanocortin peptide fragments-beta-endorphin and ACTH-in the adrenals of rats and mice by immunohistochemistry. Biull. Eksp. Biol. Med. 101: 445-447.
Attwood, P.A. and Keech, D.B. (1984) Pyruvate carboxylase. Curr. Top Cell. Regul.23: 1-55.
Baron, A.D., Brechtel, G., Wallace, P. and Edelman, S.V. (1988) Rates and tissue sites of non-insulin-and insulin-mediated glucose uptake in human. Am. J. Physiol. 255: E769-E774.
Basbaum, A.I., Fields, H.L. (1984) Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Ann. Rev. Neurosci. 7: 309-338.
Berger, J., Biswas, C., Vicaro, P.P., Strout, H.V., Saperstein, R. and Pilch, P.F. (1989) Decreased expression of the insulin-responsive glucose transporter in diabetes and fasting. Nature 340: 70-72.
Bruni, J.F., Watkins, W.B. and Yen, S.S.C. (1979) b-Endorphin in the human endocrine pancreas. J. Clin. Endocrinol. Metab. 49: 649-651.
Bunn, S.J., Marley, P.D. and Livett, B.G. (1988) The distribution of opioid binding subtypes in the bovine adrenal medulla. Neurosci. 27: 1081-1094.
Burant, C.F., Sivitz, W.I., Fukumato, H., Kayano, T., Nagamatsu, S., Seino, S., Pessin, J.E. and Bell, G.I. (1989) Mammalian glucose transporters: structure and molecular regulation. Recent Prog. Hormone Res. 47: 349-387.
Bylund, D.B., Eikenberg, D.C., Hieble, J.P., Langer, S.Z., Lefkowitz, R.J., Minneman, K.P., Molinoff, P.B., Ruffolo, R.R. Jr. and Trendelenburg, U., (1994) International union of pharmacology nomenclature of adrenoceptors. Pharmacol. Rev. 46: 121-136.
Chang, S.L., Lin, J.G., Chi, T.C., Liu, I.M. and Cheng, J.T. (1999) An insulin-dependent hypoglycaemia induced by electroacupuncture at the Zhongwan (CV12) acupoint in diabetic rats. Diabetologia 42: 250-255.
Charron, M.J., Brosius, F.C., III, Alper, S.L. and Lodish, H.F. (1989) A glucose transport protein expressed predominately in insulin-responsive tissues. Proc. Natl. Acad. Sci. U.S.A. 86: 2535-2539.
Chen, Y.A., Mestek, A., liu, J., Hurley, J.A. and Yu, L. (1993) Molecular cloning and functional expression of a m-opioid receptor from rat brain. Mol. Pharmacol. 44: 8-12.
Cheng, J.T., Chi, T.C. and Liu, I.M. (2000a) Activation of adenosine A1 receptors by drugs to lower plasma glucose in streptozotocin-induced diabetic rats. J. Auton. Nerv. Syst. 83: 127-133.
Cheng, J.T. and Liu, I.M. (2000) Stimulatory effect of caffeic acid on a1A-adrenoceptors to increase glucose uptake into cultured C2C12 cells. Naunyn-Schmiedebergs Arch. Pharmacol. 362: 122-127.
Cheng, J.T., Liu, I.M., Yen S.T. and Chen P.C. (2000b) Role of a1A-adrenoceptor in the regulation of glucose uptake into white adipocyte of rats in vitro. Auton. Neurosci.,Basic & Clinic. 84:140-146.
Chou, P., Chen, H.H. and Hsiao, K.J. (1992) Community-base epidemiological study on diabetes in Pu-Li, Taiwan. Diabetes Care 15: 81-89.
Christensen, R.L., Shade, D.L., Graves, C.B. and McDonald, J.M. (1987) Evidence that protein kinase C is involved in regulating glucose transport in the adipocyte. Int. J. Biochem. 19: 259-265.
Consoli, A., Nurjhan, N., Capani, F. and Gerich, J. (1989) Predominant role of gluconeogenesis in increased hepatic glucose production in NIDDM. Diabetes 38: 550-557.
Crist, G.H., Xu, B., Lanoue, F. and Lang, C.H. (1998) Tissue-specific effects of in vivo adenosine receptor blocked on glucose uptake in Zucker rats. FASEB J. 12: 1301-1308.
Curry, D.L. and Li, C.H. (1987) Stimulation of insulin secretion by beta-endorphin (1-27 and 1-31). Life Sci. 40: 2053-2058.
Donahue, R.P. and Orchard, T.J. (1992) Diabetes mellitus and macrovascular complications. An epidemiological perspective. Diabetes Care 15: 1141-1155.
Eizirik, D.L., Sandler, S. and Palmer, J.P. (1993) Repair of pancreatic beta-cells. A relevant phenomenon in early IDDM? Diabetes 42: 1383-1391.
Evans, C.J., Keith, D.E., Morrison, H., Madendzo, K. and Edwards, R.H. (1992) Cloning of d-opioid receptor by functional expression. Science 258: 1952-1955.
Faintrenie, G. and Géloén, A. (1998) Alpha—1 adrenergic stimulation of glucose uptake in rat white adipocytes. J. Pharmacol. Exp. Ther. 286: 607-610.
Ford, A.P.D.W., Williams, T.J., Blue, D.R. Jr. and Clarke, D.E. (1994) a1-Adrenoceptor classification: sharpening Occam’s razor. Trends. Pharmacol. Sci .15: 167-170.
Fry, J.R., Jones, C.A., Wiebkin, P., Bellemann, P. and Bridges, J.W. (1975) The enzymic isolation of adult rat hepatocytes in a functional and viable state. Anal. Biochem. 71: 741-750.
Fukumoto, H., Kayano, T., Buse, J.B., Edwards, Y., Pilch, P.F., Bell, G.I. and Seino, S. (1989) Cloning and characterization of the major insulin-responsive glucose transporter expressed in human skeletal muscle and other insulin-responsive tissues. J. Biol. Chem. 264: 7776-7779.
Garvey, W.T., Huecksteadt, T.P. and Birnbaum, M.J. (1989) Pretranslational suppression of an insulin-responsive glucose transporter in rats with diabetes mellitus. Science 245: 60-63.
Garvey, W.T., Maianu, L., Huecksteadt, T.P., Birnbaum, M.J., Molina, J.M. and Ciaraldi, T.P. (1991) Pretranslational suppression of a glucose transporter protein causes insulin resistance in adipocytes from patients with non-insulin-dependent diabetes mellitus and obesity. J. Clin. Invest. 87: 1072-1081.
Giffin, B.F., Drake, R.L., Morris, R.E. and Cardell, R.R. (1993) Hepatic lobular patterns of phosphoenolpyruvate carboxykinase, glycogen synthase, and glycogen phosphorylase in fasted and fed rats. J. Histochem. Cytochem. 41: 1849-1862, 1993.
Giugliano, D. (1984) Morphine, opioid peptides and pancreatic islet function. Diabetes Care 7: 92-98.
Giugliano, D., Torella, R., Lefebvre, P.J. and D''Onofrio, F. (1988) Opioid peptides and metabolic regulation. Diabetologia 31: 3-15.
Gliemann, J., Rees, W.D. and Foley, J.A. (1984) The fate of labeled glucose molecules in the rat adipocytes dependence on glucose concentration. Biochim. Biophys. Acta. 804: 68-76.
Goldstein, D.A. and Massry, S.G. (1978) Diabetic nephropathy: clinical course and effect of hemodialysis. Nephron 20: 286-296.
Goodyear, L.J., Hirshman, M.F., Smith, R.J. and Horton, E.S. (1991) Glucose transporter number, activity and isoform content in plasma membranes of red and white skeletal muscle. Am. J. Physiol. 261: E556-E561.
Gould, G.W. and Holman, G.D. (1993) The glucose transporter family: structure, function and tissue-specific expression. Biochem. J. 295: 329-341.
Guillemin, R., Vargo, T., Rossier, J., Minick, S., Ling, N. and Rivier, C. (1977) b-Endorphin and adrenal corticotropin are secreted concomitantly by the pituitary gland. Science 197: 1367-1369.
Hanson, R.W. and Reshef, L. (1997) Regulation of phosphoenolpyruvate carboxykinase (GTP) gene expression. Annu. Rev. Biochem. 66: 581-611.
Harada, K., Ohmori, M., Kitoh, Y., Sugimoto, K.I. and Fujimura A (1999) A comparison of the antagonistic activities of tamsulosin and terazosin against human vascular a1-adrenoceptor. Jpn. J. Pharmacol. 80: 209-215.
Harris, M.I., Hadden, W.C., Knowler, W.C. and Bennett, P.H. (1987). Prevalence of diabetes and impaired glucose tolerance and plasma glucose levels in the U.S. population aged 20-74 yr. Diabetes 36: 523-534.
Hieble, J.P., Bylund, D.B., Clarke, D.E., Eikenburg, D.C., Langer, S.Z., Lefkowitz, R.J., Minneman, K.P. and Ruffolo, R.R. Jr. (1995) International Union of Pharmacology. X. Recommendation for nomenclature of alpha 1-adrenoceptors: consensus update. Pharmacol. Rev. 47: 267-270.
Heel, R.C., Brogden, R.N., Speight, T.M. and Avery, G.S. (1978) Loperamide: a review of its pharmacological properties and therapeutic efficacy in diarrhea, Drugs 15: 33-52.
Herbert, J.M., Augereau, J.M., Gleye, J. and Maffrand, J.P. (1990) Chelerythrine is a potent and specific inhibitor of protein kinase C. Biochem. Biophys. Res. Comm. 172: 993-999.
Hofmann, C., Lorenz, K., Williams, D., Palazuk, B.J. and Colca, J.R. (1995) Insulin sensitization in diabetic rat liver by an antihyperglycemic agent. Metabolism. 44: 384-389.
Hollenbeck, C. and Reaven, G.M. (1987) Variations in insulin-stimulated glucose uptake in healthy individuals with normal glucose tolerance. J. Clin. Endocrinol. Metab. 64: 1169-1173.
Holstad, M. and Sandler, S. (1999) Prolactin protects against diabetes induced by multiple low doses of streptozotocin in mice. J. Endocrinol. 163:229-234.
James, D.E., Strube, M. and Mueckler, M. (1989) Molecular cloning and characterization of an insulin-regulatable glucose transporter. Nature 338: 83-87.
Kaestner, K.H., Christy, R.J., McLenithan, J.C., braiterman, L.T., Cornelius, P., Pekala, P.H. and Lane, M.D. (1989) Sequence, tissue distribution, and differential expression of mRNA for a putative insulin-responsive glucose transporter in mouse 3T3-L1 adipocytes. Proc. Natl. Acad. Sci. U.S.A. 86: 3150-3154.
Kahn, B.B. (1996) Lilly lecture 1995. Glucose transport: pivotal step in insulin action. Diabetes 45: 1644-1654.
Kahn, B.B., Charron, M.J., Lodish, H.F., Cushman, S.W. and Flier, J.S. (1989) Differential regulation of two glucose transporters in adipose cells from diabetic and insulin-treated diabetic rats. J. Clin. Invest. 84: 404-411.
Keen, H. (1986). What’s in a name? IDDM/NIDDM, type1/type2. Diabetic Med.3: 11-12.
King, H. (1993) Global estimates for prevalence of diabetes mellitus and impaired glucose tolerance in adults. Diabetes Care 16: 157-177.
Klip, A., Logan, W.J. and Li, G. (1982) Hexose transport in L6 muscle cells. Kinetic properties and the number of [3H]cytochalasin B binding sites. Biochem. Biophys. Acta. 687: 265-280.
Klip, A. and Paquet, M.R. (1990) Glucose transport and glucose transporters in muscles and their metabolic regulation. Diabetes Care 13: 228-243.
Koenig, J.I., Meltzer, H.Y., Devane, G.D. and Gudelsky, G.A. (1986) The concentration of arginine vasopressin in pituitary stalk plasma of the rat after adrenalectomy or morphine. Endocrinology 118: 2534-2539.
Krieger, D.T. (1983) Brain peptides: what, where and why ? Science 222: 975-985.
Krieger, D.T., Liotta, A.S., Brownstein, M.J. and Zimmerman, E.A. (1980) ACTH, b-lipoprotein and released peptides in brain, pituitary and bloos. Acta Endocrinol. 104: 85-90.
Laurence, D.R. and Bennett, P.N. (1992) Clinical Pharmacology, 7th Edition, Chruchill Livingstone, Edinburgh, pp. 393-457.
Law, P.Y., Wong, Y.H. and Loh, H.H. (2000) Molecular mechanisms and regulation of opioid receptor signaling. Ann. Rev. Pharmacol. Toxicol.40: 389-430.
Lehmann, K.A. (1994) Tramadol for the management of acute pain. Drugs 47: 19-32.
Leturque, A., Postic, C., Ferre, P. and Girard, J. (1991) Nutritional regulation of glucose transporter in muscle and adipose tissue of weaned rats. Am. J. Physiolol. 260: E588-593.
Liu, I.M., Chi, T.C., Chen, Y.C., Lu, F.H. and Cheng, J.T. (1999a) Activation of opioid mu-receptor by loperamide to lower plasma glucose in streptozotocin-induced diabetic rats. Neurosci. Lett. 265: 183-186.
Liu, I.M., Chi, T.C., Hsu, F.L., Chen, C.F. and Cheng, J.T. (1999b) Isoferulic acid as active principle from the rhizoma of Cimicifugae dahurica to lower plasma glucose in diabetic rats. Planta Med 65: 712-714.
Liu, I.M., Hsu, F.L., Chen, C.F. and Cheng, J.T. (2000a) Antihyperglycemic action of isoferulic acid in streptozotocin-induced diabetic rats. Br. J. Pharmacol. 129: 631-636.
Liu, I.M., Huang, L.W. and Cheng, J.T. (2000b) Gene expression of a1A-adrenoceptor but not a1B-adrenoceptor in cultured C2C12 cells. Neurosci. Lett. 294: 93-96
Liu, I.M., Niu, C.S., Chi, T.C., Kuo, D.H. and Cheng, J.T. (1999c) Investigations of the mechanism of the reduction of plasma glucose by cold-stress in streptozotocin-induced diabetic rats. Neurosci. 92:1137-1142.
Liu, Y. C. and Lee, Y. J. (1992) Treatment of diabetes mellitus using Chinese traditional medicine. Jyr Yuan Book Store, Taipei. pp. 25-36.
Loh, H.H., Liu, H.C., Cavalli, A., Yang, W. and Chen, Y.F. (1998) m-Opioid receptor knockout in mice: effects on ligand-induced analgesia and morphine lethality. Mol. Brain Res. 54: 321-326.
Loh, H.H. and Smith, A.P. (1989) Molecular characterization of opioid receptors. Ann. Rev. Pharmacol. Toxicol. 30: 123-147.
Lowry, O.H., Rosebrough, N.J., Farr, A.L. and Randall, R.J. (1951) Protein measurement with the folin phenol reagent. J. Biol. Chem. 193: 265-275.
Minneman, K.P., Han, C. and Abel, P.W. (1988) Comparison of a1-adrenergic receptor subtypes distinguished by chlorethylclonidine and WB 4101. Mol. Pharmacol. 33: 509-514.
Mitsuma, T., Nogimori, T., Sun, D.H. and Chaya, M. (1987) Thyrotropin-releasing hormone reduces the plasma levels of beta-endorphin-like immunoreactivity in rats. Exp. Clin. Endocrinol. 89: 55-60.
Mueckler, M. (1994) Facilitative glucose transporters. Eur. J. Biochem. 219: 713-725.
Muto, Y., Nagao, T. and Urushidani, T. (1997) The putative phospholipase C inhibitor U73122 and its negative control, U73343, elicit unexpected effects on the rabbit parietal cell. J. Pharmac. Exp. Ther. 282: 1379-1388.
Pedersen, O., Kahn, C.R.and Kahn, B.B. (1992) Divergent regulation of the Glut 1 and Glut 4 glucose transporters in isolated adipocytes from Zucker rats. J. Clin. Invest. 89: 1964-1973.
Piascik, M.T., Guarino, R.D., Smith, M.S., Soltis, E.E., Saussy, D.L. Jr and Perez, D.M. (1995) The specific contribution of the novel alpha-1D adrenoceptor to the contraction of vascular smooth muscle. J. Pharmacol. Exp. Ther. 275: 1583-1589.
Pessin, J.E. and Bell, G.I. (1992) Mammalian facilitative glucose transporter family: structure and molecular regulation. Annu. Rev. Physiol. 54: 911-930.
Ploug, T., Stallknecht, B.M., Perdersen, O., Kahn, B.B., Ohkuwa, T., Vinten, J. and Galbo, H. (1990) Effect of endurance training on glucose transport capacity and glucose transporter expression in rat skeletal muscle. Am. J. Physiol. 259: E778-786.
Polak, J.M., Bloom, S.R., Sullivan, S.N., Facer, P. and Pearse, A.G. (1977) Enkephalin-like immunoreactivity in the human gastrointestinal tract. Lancet 1: 972-974.
Portha, B., Levacher, C., Picon, L. and Rosselin, G. (1974) Diabetogenic effect of streptozotocin in the rat during the perinatal period. Diabetes 23: 889-895.
Rahman, W., Dashwood, N.R., Fitzgerald, M., Aynsley-Green, A. and Dickenson, A.H. (1998) Postnatal development of multiple opioid receptors in the spinal cord and development of spinal morphine analgesia. Brain Res. Dev. Brain Res. 108: 239-254.
Richardson, J.M., Balon, T.W., Treadway, J.L. and Pessin, J.E. (1991) Differential regulation of glucose transporter activity and expression in red and white skeletal muscle. J. Biol. Chem. 266: 12690-12694.
Rognstad, R. (1979) Rate-limiting steps in metabolic pathways. J. Biol. Chem. 254: 1875-1878.
Schultzberg, M., Lundberg, J.M., Hokfelt, T., Terenius, L., Brandt, J., Elde, R.P. and Goldstein, M. (1978) Enkephalin-like immunoreactivity in gland cells and nerve terminals of the adrenal medulla. Neurosci. 3: 1169-1186.
Sheriff, S., Fischer, J.E. and Balasubramaniam, A. (1992) Amylin inhibits insulin-stimulated glucose uptake in C2C12 muscle cell line through a cholera-toxin-sensitive mechanism. Biochim. Biophys. Acta. 1136: 219-222.
Sivitz, W.I., DeSautel. S.L., Kayano, T., Bell, G.I. and Pessin, J.E. (1989) Regulation of glucose transporter messenger RNA in insulin-deficient states. Nature 340: 72-74.
Smallridge, R.C., Kiang, J.G., Gist, I.D., Fein, H.G. and Gallowat, R.J. (1992) U-73122, an aminosteroid phospholipase C antagonist, noncompetitively inhibits thyrotropin-releasing hormone effects in GH3 rat pituitary cell. Endocrinology 131: 1883-1888.
Spraul, M., Anderson, E. A., Bogardus, C. and Ravussin, E. (1994) Muscle sympathetic nerve activity in response to glucose ingestion. Impact of plasma insulin and body fat. Diabetes 43: 191-196.
Sugaya, A., Sugiyama, T., Yanase, S., Shen, X.X., Minoura, H. and Toyoda N. (1999) Expression of glucose transporter 4 mRNA in adipose tissue and skeletal muscle of ovariectomized rats treated with sex steroid hormones Life Sci. 66: 641-648.
Tai, T.Y., Yang, C.L. and Chang C.J. (1987) Epidemiology of diabetes mellitus in Taiwan, ROC-comparison between urban and rural areas. J. Med. A. Taiwan. 70: 49-53.
Thomas, M.J. and Thomas, J.A. (1997) Modern Pharmacology, 5th Edition, Little, Brown and Company, Boston, U.S.A., pp. 795-797.
Tian, M., Broxmeyer, H.E., Fan, Y., Lai, Z., Zhang, S., Aronica, S., Cooper, S., Bigsby, R.M., Steinmetz, R., Engle, S.J., Mestek, A., Pollock, J.D., Lehman, M.N., Jansen, H.T., Ying, M., Stambrook, P.J., Tischfield, J.A. and Yu, L. (1997) Altered hematopoiesis, behavior, and sexual function in mu opioid receptor-deficient mice. J. Exp. Med. 185: 1517-1522.
Torrance, C.J., Devente, J.E., Jones, J.P. and Dohm, G.L. (1997) Characterization of a low affinity thyroid hormone receptor binding site within the rat GLUT4 gene promoter. Endocrinology 138: 1204-1214.
Toullec, D., Pianetti, P., Coste, H., Bellevergue, P., Grand-Perret, T., Ajakane, M., Baudent, V., Boissin, P., Boursier, E., Loriolle, F., Duhamel, L., Charon, D. and Kirilovsky, J. (1991) The bisindolylmaleimide GF 109203X is a potent and selective inhibitor of protein kinase C. J. Biol. Chem. 266: 15771-15781.
Vargo, T., Rossier, J., Minick, S., Ling, N., Rivier, C., Vale, W. and Bloom, F. (1977) b-endorphin and adrenal corticotropin are secreted concomitantly by the pituitary gland. Science 197: 1367-1369.
Vatta, M.S., Presas, M.F., Bianciotti, G., Rodriguez-Fermepin, M., Ambros, R. and Fernandez, B.E. (1997) B and C types natriuretic peptides modify norepinephrine uptake and release in the rat adrenal medulla. Peptides 18: 1483-1489.
Viveros, O.H., Diliberto, E.J., Hazum, E. and Chang, K.J. (1979) Opiate-like materal in the adrenal medulla: evidence for storeage and secretion with catecholamines. Mol. Pharmacol. 16: 1101-1108.
Wake, S.A., Sowden, J.A., Storlien, L.H., James, D.E., Clark, P.W., Shine, J., Chisholm, D.J. and Kraegen, E.W. (1991) Effects of exercise training and dietary manipulation on insulin-regulatable glucose-transporter mRNA in rat muscle. Diabetes 40: 275-279.
Weidmann, P., Boehlen, L.M. and de Courten, M. (1993) Pathogenesis and treatment of hypertension associated with diabetes mellitus. Am. Heart. J. 125: 1498-1513.
Weinstein, S.P., Watts, J. and Haber, R.S. (1991) Thyroid hormone increases muscle/fat glucose transporter gene expression in rat skeletal muscle. Endocrinology 129: 455-464.
Wohaieb, S.A. and Godin, D.V. (1987) Alterations in free radical tissue-defense mechanisms in streptozotocin-induced diabetes in rat. Effect of insulin treatment. Diabetes 36: 1014-1018.
Yamada, K., Yamakawa, K. and Terada, Y. (1999) Expression of GLUT4 glucose transporter protein in adipose and skeletal muscle from streptozotocin-induced diabetic pregnant rats. Horm. Metab. Res. 31: 508-513.
Yang, H.Y., Di Giulio, A.M., Fratta, W., Hong, J.S., Majane, E.A., Costa, E. (1980) Enkephalin in bovine adrenal gland: multiple molecular forms of [Met5]-enkephalin immunoreactive peptides. Neuropharmacology 19: 209-215.
Yasuda, K., Raynor, K., Kong, H., Breder, C.D., Takeda, J., Reisine, T. and Bell, G.I. (1993) Cloning and functional comparison of k and d receptors from mouse brain. Proc. Natl. Sci. U.S.A. 90: 6736-6740.
Yazawa, H., Takanashi, M., Sudoh, K., Inagaki, O. and Honda, K. (1992) Characterization of [3H]YM617, R-(-)-5-[2-[[2[ethoxyring(n)-3H](o-ethoxyphenoxy)ethyl]amino]-propyl]-2-methoxybenzenesulfonamide HCl, a potent and selective alpha-1 adrenoceptor radioligand. J. Pharmacol. Exp. Ther. 263: 201-206.
Zhong, H. and Minneman, KP. (1999) a1-Adrenoceptor subtypes. Eur. J. Pharmacol. 375: 261-276.
Ziel, F.H., Venkatesan, N. and Davidson, M.B. (1988) Glucose transport is rate limiting for skeletal muscle glucose metabolism in normal and STZ-induced diabetic rats. Diabetes 37: 885-890.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top