|
[1] M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions with For- mulas, Graphs, and Mathematical Tables. Dover, New York, 9th printing edition, 1972. [2] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University Press, 2004. [3] M. H. M. Costa. Writing on dirty paper (corresp.). IEEE Trans. Inform. Theory, 29(3):439–441, May. 1983. [4] I. Csisz′ar and J. K‥orner. Broadcast channels with confidential messages. IEEE Trans. Inform. Theory, 24(3):339–348, May. 1978. [5] S. I. Gelfand and M. S. Pinsker. Coding for channel with random parameters. Prob- lems of control and information theory, 9(1):19–31, 1980. [6] S. Goel and R. Negi. Guaranteeing secrecy using artificial noise. IEEE Trans.Wireless Commun., 7(6):2180–2189, Jun. 2008. [7] P. K. Gopala, L. Lai, and H. El-Gamal. On the secrecy capacity of fading channels. IEEE Trans. Inform. Theory, 54(10):4687–4698, Oct. 2008. [8] M. T. Heath. Scientific computing: an introductory survey. McGraw-Hill, New York, 2002. [9] R. A. Horn and C. R. Johnson. Matrix analysis. Cambridge university press, Cam- bridge, UK, 1985. [10] A. V. Kusnetsov and B. S. Tsybakov. Coding in a memory with defective cells. Probl. Pered. Inform., 10(2):53–60, Apr.-Jun. 1974. [11] S. K. Leung-Yan-Cheong and M. E. Hellman. The gaussian wire-tap channel. IEEE Trans. Inform. Theory, 24(4):451–456, Jul. 1978. [12] J. Li and A. Petropulu. Transmitter optimization for achieving secrecy capacity in gaussian mimo wiretap channels. http://arxiv.org/abs/0909.2622, Sep. 2009. [13] J. Li and A. Petropulu. On ergodic secrecy rate for gaussian miso wiretap channels. IEEE Trans. Wireless Commun., 10(4):1176 –1187, April 2011. [14] Z. Li, R. Yates, and W. Trappe. Secret communication with a fading eavesdropper channel. In Information Theory, 2007. ISIT 2007. IEEE International Symposium on, pages 1296–1300, Jun. 2007. [15] Z. Li, R. Yates, and W. Trappe. Achieving secret communication for fast rayleigh fading channels. IEEE Trans. Wireless Commun., 9(9):2792–2799, Sep. 2010. [16] Z. Li, R. D. Yates, andW. Trappe. Secrecy capacity of independent parallel channels. In 44th Annual Allerton Conference on Communications, Control and Computing, Sep. 2006. [17] Y. Liang, H. V. Poor, and S. Shamai. Secure communication over fading channels. IEEE Trans. Inform. Theory, 54(6):2470–2492, Jun. 2008. [18] S. C. Lin, T. H. Chang, Y. L. Liang, Y. P. Hong, and C. Y. Chi. On the impact of quantized channel feedback in guaranteeing secrecy with artificial noise: The noise leakage problem. IEEE Trans. Wireless Commun., 10(3):901–915, Mar. 2011. [19] C. Mitrpant, A.J.H. Vinck, and Y. Luo. An achievable region for the gaussian wiretap channel with side information. IEEE Trans. Inform. Theory, 52(5):2181 –2190, May. 2006. [20] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM, 21:120–126, Feb. 1978. [21] C. E. Shannon. Communication theory of secrecy systems. B.S.T.J, 28(4):656–715, Oct. 1949. [22] C. E. Shannon. Channels with side information at the transmitter. IBM J. Res. Devel., 2:289–293, 1958. [23] P. W. Shor. Polynomial-time algorithms for prime factorization and discrete loga- rithms on a quantum computer. SIAM J.SCI.STATIST.COMPUT., 26:1484, 1997. [24] A. D. Wyner. The wire-tap channel. Bell. Syst. Tech. J., 54(8):1355–1387, Jan. 1975.
|