跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.110) 您好!臺灣時間:2025/09/29 02:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:徐玉馨
研究生(外文):Yu-Hsin Hsu
論文名稱:修飾豬生殖與呼吸綜合症GP5醣蛋白與M蛋白基因表現之研究
論文名稱(外文):Expression studies of modified porcine reproductive and respiratory syndrome virus glycoprotein 5 and matrix protein
指導教授:吳美莉吳美莉引用關係
指導教授(外文):Mei-Li Wu
學位類別:碩士
校院名稱:國立屏東科技大學
系所名稱:動物疫苗科技研究所
學門:獸醫學門
學類:獸醫學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:中文
論文頁數:85
中文關鍵詞:豬生殖與呼吸綜合症GP5蛋白M蛋白桿狀病毒表現系統
外文關鍵詞:Porcine reproductive and respiratory syndromeGP5MBEVS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:456
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
豬生殖與呼吸綜合症(Porcine reproductive and respiratory syndrome;PRRS)的爆發造成世界經濟嚴重受挫。而此疾病的發生是由PRRS病毒(PRRSV)所造成,PRRSV為具封套的RNA病毒,屬於動脈病毒屬家族 (Arteriviridae)。高致病性的PRRSV在中國大陸盛行,造成豬隻持續性發燒,甚至死亡。因此開發有效抵抗高致病性的PRRSV疫苗是重要的議題。其主要的結構蛋白被認為能引發免疫反應抵抗PRRSV的感染,其中醣蛋白GP5與基質蛋白M為病毒的主要結構蛋白,也是重要的免疫原蛋白,而GP5與M蛋白能以雙硫鍵連結方式形成GP5/M 異源二聚體於病毒表面上,並且能夠誘導中和抗體,因此為開發疫苗的關鍵性目標。本實驗以發展具安全性且更具效力之次單位疫苗為目標,利用桿狀病毒表現系統 (BEVS) 表現修飾的GP5與M蛋白,將GP5與M之基因選殖於pFastBacTM載體,轉型於DH10Bac™利用抗生素及藍白篩選重組bacmid並且轉染至Sf9昆蟲細胞。以利用SDS-PAGE及西方墨點法評估此重組蛋白之抗原性以及其於疫苗開發之潛力。
Porcine reproductive and respiratory syndrome (PRRS) is the most important infectious disease in pigs, caused huge economic losses in the world. This infectious disease is caused by PRRS virus (PRRSV), an enveloped RNA virus of the Arterivirdae family. A highly pathogenic PRRSV, which causes continuous high fever and a high proportion of deaths in pigs, has emerged and prevailed in Mainland China. Huge efforts should be made towards the development of an efficient vaccine against the highly pathogenic PRRSV. PRRSV has major structural proteins which those have been considered very important to arouse the immune responses against PRRSV infection. Glycoprotein 5 (GP5) and non-glycosylated matrix protein (M) are important major structural proteins and immunogenic protein of PRRSV. GP5 and M proteins form disulfide-linked heterodimer(GP5/M) in the viral surface. It might induce neutralizing antibodies, and thus is a primary target for developing a subunit vaccine. The objective of this study is to develop a more efficient subunit vaccine against PRRS by baculovivrus expression vector system. Modified GP5 and M proteins were expressed in baculovirus expression vector system (BEVS). The recombinant plasmids containing modified GP5 and M genes have been cloned into pFastBacTM vector and were transformed into DH10BacTM. Antibiotic selection and blue/white screening were used to select recombinant bacmids and insect cells were transfected with recombinant bacmids. These recombinant proteins was analyzed by SDS-PAGE and western blot. The potential use of the GP5 amd M protein as a subunit vaccine will be further evaluated.
摘 要 I
Abstract II
謝誌 IV
目錄 V
圖表目錄 IX
第1章 緒言 1
第2章 文獻回顧 4
2.1 豬繁殖與呼吸道綜合症 4
2.1.1 豬繁殖與呼吸道綜合症病原之背景 4
2.1.2 PRRSV之分類 4
2.1.3 PRRSV之結構及特性 5
2.1.3 PRRSV之感染 6
2.1.4 PRRSV Life cycle 7
2.1.5 PRRSV之傳播途徑 7
2.1.6 PRRSV臨床症狀 8
2.1.7 PRRSV之診斷 8
2.1.8 PRRSV治療及預防 9
2.1.9 PRRSV結構蛋白GP5 9
2.1.10 PRRSV結構蛋白M 10
2.1.11中國高致病性豬生殖與呼吸綜合症 10
2.2 桿狀病毒表現系統 (Baculovirus expression system) 11
2.2.1 桿狀病毒之分類 11
2.2.2 桿狀病毒之結構 12
2.2.3 桿狀病毒之生活史 12
2.2.4 桿狀病毒之基因表現 13
2.2.5桿狀病毒基因操作流程 13
第3章 材料與方法 15
3.1 本實驗使用菌株與細胞種類 15
3.1.1 菌株種類 15
3.1.2 細胞株種類 15
3.1.3 載體 15
3.1.4 儀器設備 15
3.2豬生殖與呼吸綜合症之ORF5蛋白GP5之選殖 16
3.2.1 PRRSV cDNA之萃取 16
3.2.1.1 以PRRSV進行總量cDNA之萃取 16
3.2.1.2 核糖核酸濃度的定量與計算 16
3.2.2 yT&;A-GP5、yT&;A-dNGP5、yT&;A-M 質體之構築 17
3.2.2.1引子(Primer)之設計 17
3.2.2.2 聚合酶連鎖反應 (Polymerase chain reaction, PCR) 17
3.2.2.3 DNA瓊脂糖凝膠電泳 18
3.2.2.4 DNA膠體純化 (Gel purification) 18
3.2.2.5 TA clone 接合反應 19
3.2.2.6 勝任細胞(Competent cell)之製備 19
3.2.2.7 轉型作用(Transformation) 20
3.2.2.8 藍白篩選 (Blue/White screeing) 20
3.2.2.9 以PCR方式確定選殖基因GP5、dNGP5、M(PH)以及M(P10)片段 21
3.2.2.10 yT&;A-GP5、yT&;A-dNGP5與yT&;A-M質體之萃取 22
3.2.2.11 以限制酵素處理重組質體帶有選殖GP5、NGP5及M基因片段 22
3.2.2.12定序 (Sequencing) 24
3.3 桿狀病毒表現系統Baculovirus expression vector system (BEVS) 24
3.3.1 pDual-GP5與pDual-dNGP5轉型載體之構築 24
3.3.1.1 yT&;A-GP5及yT&;A-dNGP5質體抽取 24
3.3.1.2 GP5、dNGP5與pDual以電泳法回收DNA 24
3.3.1.3 DNA瓊脂糖凝膠電泳 25
3.3.1.4 DNA膠體純化 (Gel purification) 25
3.3.1.5接合反應 (Ligation) 25
3.3.1.6轉型作用(Transformation) 26
3.3.1.7以PCR方式確定選殖基因GP5以及dNGP5片段 26
3.3.1.8 pDual-GP5及pDual-dNGP5質體抽取 26
3.3.1.9以限制酵素處理重組質體帶有選殖GP5以及dNGP5基因片段 26
3.3.2 pDual-M-GP5與pDual-M-dNGP5轉型載體之構築 26
3.3.2.1 yT&;A-M、pDual-GP5及pDual-dNGP5質體抽取 27
3.3.2.2 pDual-GP5、pDual-dNGP5與M以電泳法回收DNA 27
3.3.2.3 DNA瓊脂糖凝膠電泳 27
3.3.2.4 DNA膠體純化 (Gel purification) 27
3.3.2.5接合反應 (Ligation) 28
3.3.2.6轉型作用(Transformation) 28
3.3.2.7以PCR方式確定選殖基因M-GP5以及M-dNGP5片段 28
3.3.2.8 pDual-M-GP5及pDual-M-dNGP5質體抽取 28
3.3.2.9以限制酵素處理重組質體帶有選殖M-GP5以及M-dNGP5基因片段 29
3.3.3 Bacmid-GP5、Bacmid-dNGP5、Bacmid-M-GP5與Bacmid-M-dNGP5之構築 29
3.3.3.1轉型作用(Transformation) 30
3.3.3.2以PCR方式確定選殖基因GP5、dNGP5、M-GP5及M-dNGP5片段 30
3.3.3.3 Bacmid-GP5、Bacmid-dNGP5、Bacmid-M-GP5與Bacmid-M-dNGP5質體抽取 31
3.3.3.4以PCR方式確定重組Bacmid之基因GP5、dNGP5、M-GP5及M-dNGP5片段 32
3.3.4細胞株之培養 33
3.3.4.1昆蟲細胞Sf-9細胞株之培養 33
3.3.4.2 Sf9細胞繼代培養 33
3.3.4.3 Sf9細胞計數 34
3.3.4.4 Sf-9細胞冷凍保存 34
3.3.5昆蟲細胞Sf-9之轉染作用(Transfection) 34
3.3.5.1細胞之轉染作用(Transfection) 34
3.3.6重組桿狀病毒 35
3.3.6.1分離初代桿狀病毒(Isolating P1 Viral Stock) 35
3.3.6.2放大桿狀病毒(Amplifying P2 Viral Stock) 35
3.3.6.3抽取重組病毒之DNA 36
3.3.6.3利用PCR 確認重組病毒 36
3.3.7表現重組蛋白GP5、dNGP5、M-GP5和M-dNGP5 36
3.3.7.1 生產重組蛋白GP5、dNGP5、M-GP5和M-dNGP5 36
3.3.7.2蛋白質定量 37
3.3.7.3聚丙烯醯胺膠體電泳(SDS-PAGE) 37
3.3.7.4蛋白質轉漬 (Transfer) 38
3.3.7.5西方墨點法呈色分析 39
第4章 結果 40
4.1 豬呼吸道綜合症病毒之GP5、dNGP5及ORF5 蛋白之選殖 40
4.1.1yT&;A-GP5、yT&;A-dNGP5以及yT&;A-M載體之構築 40
4.1.2 基因之序列比對 40
4.2桿狀病毒表現系統 (Baculovirus expression system) 40
4.2.1 pDual-GP5以及pDual-dNGP5載體之構築 40
4.2.2 pDual-M-GP5以及pDual-M-dNGP5載體之構築 41
4.2.3 Bacmid-GP5、Bacmid-dNGP5、Bacmid-M-GP5與Bacmid-M-dNGP5之構築 41
4.2.4增幅可表現GP5、dNGP5、M-GP5及M-dNGP5之重組Baculovirus 42
4.2.5以SDS-PAGE分析重組蛋白GP5、dNGP5、M-GP5和M-dNGP之表現 42
4.2.6 測定重組蛋白GP5、dNGP5、M-GP5和M-dNGP之抗原性 43
4.2.7 SDS-PAGE及西方墨點法分析重組蛋白dNGP5之最佳表現時間點及蛋白定量 43
第5章 討論 67
參考文獻 71
附錄 78
作者簡介 85

洪嘉佑。 豬繁殖與呼吸綜合症病毒GP5及M蛋白於原核共同表現系統之建立。國立屏東科技大學生物科技研究所碩士論文,2012。
郭瑞伶。 修飾的豬第二型環狀病毒封套蛋白於桿狀病毒表現系統及菌體表面呈現系統之表達。 國立屏東科技大學生物科技研究所碩士論文,2011。
熊能。台灣地區豬生殖與呼吸綜合症病毒高變異基因監測。 國立屏東科技大學獸醫學系碩士論文,2009。
Ansari IH, Kwon B, Osorio FA, and Pattnaik AK. Influence of N-linked glycosylation of porcine reproductive and respiratory syndrome virus GP5 on virus infectivity, antigenicity, and ability to induce neutralizing antibodies. J Virol 80: 3994-4004, 2006.
Barfoed AM, Blixenkrone-Moller M, Jensen MH, Botner A, and Kamstrup S. DNA vaccination of pigs with open reading frame 1-7 of PRRS virus. Vaccine 22: 3628-3641, 2004.
Baron T, Albina E, Leforban Y, Madec F, Guilmoto H, Plana Duran J, and Vannier P. Report on the first outbreaks of the porcine reproductive and respiratory syndrome (PRRS) in France. Diagnosis and viral isolation. Annales de recherches veterinaires Annals of veterinary research 23: 161-166, 1992.
Benfield DA, Nelson E, Collins JE, Harris L, Goyal SM, Robison D, Christianson WT, Morrison RB, Gorcyca D, and Chladek D. Characterization of swine infertility and respiratory syndrome (SIRS) virus (isolate ATCC VR-2332). Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc 4: 127-133, 1992.
Beyer J, Fichtner D, Schirrmeier H, Polster U, Weiland E, and Wege H. Porcine reproductive and respiratory syndrome virus (PRRSV): kinetics of infection in lymphatic organs and lung. Journal of veterinary medicine B, Infectious diseases and veterinary public health 47: 9-25, 2000.
Blissard GW, and Rohrmann GF. Baculovirus diversity and molecular biology. Annual review of entomology 35: 127-155, 1990.
Conzelmann KK, Visser N, Van Woensel P, and Thiel HJ. Molecular characterization of porcine reproductive and respiratory syndrome virus, a member of the arterivirus group. Virology 193: 329-339, 1993.
Cruz JL, Zuniga S, Becares M, Sola I, Ceriani JE, Juanola S, Plana J, and Enjuanes L. Vectored vaccines to protect against PRRSV. Virus Res 154: 150-160, 2010.
Das PB, Vu HL, Dinh PX, Cooney JL, Kwon B, Osorio FA, and Pattnaik AK. Glycosylation of minor envelope glycoproteins of porcine reproductive and respiratory syndrome virus in infectious virus recovery, receptor interaction, and immune response. Virology 410: 385-394, 2011.
Duan X, Nauwynck HJ, and Pensaert MB. Effects of origin and state of differentiation and activation of monocytes/macrophages on their susceptibility to porcine reproductive and respiratory syndrome virus (PRRSV). Arch Virol 142: 2483-2497, 1997.
Fang L, Jiang Y, Xiao S, Niu C, Zhang H, and Chen H. Enhanced immunogenicity of the modified GP5 of porcine reproductive and respiratory syndrome virus. Virus Genes 32: 5-11, 2006.
Glocker B, Hoopes RR, Jr., and Rohrmann GF. In vitro transactivation of baculovirus early genes by nuclear extracts from Autographa californica nuclear polyhedrosis virus-infected Spodoptera frugiperda cells. J Virol 66: 3476-3484, 1992.
Harrap KA. The structure of nuclear polyhedrosis viruses. 3. Virus assembly. Virology 50: 133-139, 1972.
Harrap KA. The structure of nuclear polyhedrosis viruses. I. The inclusion body. Virology 50: 114-123, 1972.
Harrap KA. The structure of nuclear polyhedrosis viruses. II. The virus particle. Virology 50: 124-132, 1972.
Hou YH, Chen J, Tong GZ, Tian ZJ, Zhou YJ, Li GX, Li X, Peng JM, An TQ, and Yang HC. A recombinant plasmid co-expressing swine ubiquitin and the GP5 encoding-gene of porcine reproductive and respiratory syndrome virus induces protective immunity in piglets. Vaccine 26: 1438-1449, 2008.
Huang Q, Yao Q, Fan H, Xiao S, Si Y, and Chen H. Development of a vaccine vector based on a subgenomic replicon of porcine reproductive and respiratory syndrome virus. J Virol Methods 160: 22-28, 2009.
Jiang W, Jiang P, Wang X, Li Y, and Du Y. Enhanced immune responses of mice inoculated recombinant adenoviruses expressing GP5 by fusion with GP3 and/or GP4 of PRRS virus. Virus Res 136: 50-57, 2008.
Lager KM, Mengeling WL, and Wesley RD. Strain predominance following exposure of vaccinated and naive pregnant gilts to multiple strains of porcine reproductive and respiratory syndrome virus. Canadian journal of veterinary research = Revue canadienne de recherche veterinaire 67: 121-127, 2003.
Li B, Xiao S, Wang Y, Xu S, Jiang Y, Chen H, and Fang L. Immunogenicity of the highly pathogenic porcine reproductive and respiratory syndrome virus GP5 protein encoded by a synthetic ORF5 gene. Vaccine 27: 1957-1963, 2009.
Mardassi H, Massie B, and Dea S. Intracellular synthesis, processing, and transport of proteins encoded by ORFs 5 to 7 of porcine reproductive and respiratory syndrome virus. Virology 221: 98-112, 1996.
Mardassi H, Wilson L, Mounir S, and Dea S. Detection of porcine reproductive and respiratory syndrome virus and efficient differentiation between Canadian and European strains by reverse transcription and PCR amplification. Journal of clinical microbiology 32: 2197-2203, 1994.
Meulenberg JJ, Petersen-den Besten A, De Kluyver EP, Moormann RJ, Schaaper WM, and Wensvoort G. Characterization of proteins encoded by ORFs 2 to 7 of Lelystad virus. Virology 206: 155-163, 1995.
Nelson EA, Christopher-Hennings J, and Benfield DA. Serum immune responses to the proteins of porcine reproductive and respiratory syndrome (PRRS) virus. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc 6: 410-415, 1994.
Oleksiewicz MB, Botner A, Toft P, Normann P, and Storgaard T. Epitope mapping porcine reproductive and respiratory syndrome virus by phage display: the nsp2 fragment of the replicase polyprotein contains a cluster of B-cell epitopes. J Virol 75: 3277-3290, 2001.
Ostrowski M, Galeota JA, Jar AM, Platt KB, Osorio FA, and Lopez OJ. Identification of neutralizing and nonneutralizing epitopes in the porcine reproductive and respiratory syndrome virus GP5 ectodomain. J Virol 76: 4241-4250, 2002.
Pasternak AO, van den Born E, Spaan WJ, and Snijder EJ. Sequence requirements for RNA strand transfer during nidovirus discontinuous subgenomic RNA synthesis. The EMBO journal 20: 7220-7228, 2001.
Plagemann PG, and Moennig V. Lactate dehydrogenase-elevating virus, equine arteritis virus, and simian hemorrhagic fever virus: a new group of positive-strand RNA viruses. Advances in virus research 41: 99-192, 1992.
Prieto C, and Castro JM. Porcine reproductive and respiratory syndrome virus infection in the boar: a review. Theriogenology 63: 1-16, 2005.
Rossow KD, Bautista EM, Goyal SM, Molitor TW, Murtaugh MP, Morrison RB, Benfield DA, and Collins JE. Experimental porcine reproductive and respiratory syndrome virus infection in one-, four-, and 10-week-old pigs. Journal of veterinary diagnostic investigation : official publication of the American Association of Veterinary Laboratory Diagnosticians, Inc 6: 3-12, 1994.
Suarez P, Zardoya R, Prieto C, Solana A, Tabares E, Bautista JM, and Castro JM. Direct detection of the porcine reproductive and respiratory syndrome (PRRS) virus by reverse polymerase chain reaction (RT-PCR). Arch Virol 135: 89-99, 1994.
Summers MD, and Anderson DL. Granulosis virus deoxyribonucleic acid: a closed, double-stranded molecule. J Virol 9: 710-713, 1972.
Sur JH, Doster AR, Christian JS, Galeota JA, Wills RW, Zimmerman JJ, and Osorio FA. Porcine reproductive and respiratory syndrome virus replicates in testicular germ cells, alters spermatogenesis, and induces germ cell death by apoptosis. J Virol 71: 9170-9179, 1997.
Thanawongnuwech R, Thacker EL, and Halbur PG. Effect of porcine reproductive and respiratory syndrome virus (PRRSV) (isolate ATCC VR-2385) infection on bactericidal activity of porcine pulmonary intravascular macrophages (PIMs): in vitro comparisons with pulmonary alveolar macrophages (PAMs). Vet Immunol Immunopathol 59: 323-335, 1997.
Tian K, Yu X, Zhao T, Feng Y, Cao Z, Wang C, Hu Y, Chen X, Hu D, Tian X, Liu D, Zhang S, Deng X, Ding Y, Yang L, Zhang Y, Xiao H, Qiao M, Wang B, Hou L, Wang X, Yang X, Kang L, Sun M, Jin P, Wang S, Kitamura Y, Yan J, and Gao GF. Emergence of fatal PRRSV variants: unparalleled outbreaks of atypical PRRS in China and molecular dissection of the unique hallmark. PloS one 2: e526, 2007.
Tweeten KA, Bulla LA, and Consigli RA. Characterization of an extremely basic protein derived from granulosis virus nucleocapsids. J Virol 33: 866-876, 1980.
Wensvoort G, Terpstra C, Pol JM, ter Laak EA, Bloemraad M, de Kluyver EP, Kragten C, van Buiten L, den Besten A, Wagenaar F, and et al. Mystery swine disease in The Netherlands: the isolation of Lelystad virus. The Veterinary quarterly 13: 121-130, 1991.
Wensvoort G, Terpstra C, and Pol JM. ['Lelystad agent'--the cause of abortus blauw (mystery swine disease)]. Tijdschrift voor diergeneeskunde 116: 675-676, 1991.
Xu XG, Wang ZS, Zhang Q, Li ZC, Ding L, Li W, Wu HY, Chang CD, Lee LH, Tong DW, and Liu HJ. Baculovirus as a PRRSV and PCV2 bivalent vaccine vector: baculovirus virions displaying simultaneously GP5 glycoprotein of PRRSV and capsid protein of PCV2. J Virol Methods 179: 359-366, 2012.
Zheng Q, Chen D, Li P, Bi Z, Cao R, Zhou B, and Chen P. Co-expressing GP5 and M proteins under different promoters in recombinant modified vaccinia virus ankara (rMVA)-based vaccine vector enhanced the humoral and cellular immune responses of porcine reproductive and respiratory syndrome virus (PRRSV). Virus Genes 35: 585-595, 2007.
Zhou YJ, Hao XF, Tian ZJ, Tong GZ, Yoo D, An TQ, Zhou T, Li GX, Qiu HJ, Wei TC, and Yuan XF. Highly virulent porcine reproductive and respiratory syndrome virus emerged in China. Transboundary and emerging diseases 55: 152-164, 2008.
Zimmerman JJ, Yoon KJ, Pirtle EC, Wills RW, Sanderson TJ, and McGinley MJ. Studies of porcine reproductive and respiratory syndrome (PRRS) virus infection in avian species. Vet Microbiol 55: 329-336, 1997.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top