跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.44) 您好!臺灣時間:2025/12/31 11:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:趙珮雯
研究生(外文):Pei-Wen Zhao
論文名稱:在膀胱癌中DNA甲基化影響穀胱甘肽轉移酶Mu1的基因表現研究
論文名稱(外文):Study of DNA Methylation Affecting Glutathione S-Transferase Mu 1 Gene Expression in Bladder Cancer
指導教授:劉怡文劉怡文引用關係
指導教授(外文):Yi-Wen Liu
學位類別:碩士
校院名稱:國立嘉義大學
系所名稱:微生物免疫與生物藥學系研究所
學門:生命科學學門
學類:其他生命科學學類
論文種類:學術論文
畢業學年度:103
語文別:中文
論文頁數:90
中文關鍵詞:膀胱癌穀胱甘肽轉移酶M1DNA甲基化5-aza-2’-deoxycytidine泌尿上皮細胞
相關次數:
  • 被引用被引用:0
  • 點閱點閱:202
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
根據行政院衛生署所發表之台灣地區癌症登記調查報告,膀胱癌是常見的泌尿系統癌症。目前被認為最有效的膀胱癌檢查方法為膀胱內視鏡檢查,並且透過內視鏡摘取可疑檢體送病理部化驗。然而,該檢查方法的過程是屬於侵犯性,因此會令人感覺不舒服。所以目前研究較傾向於利用尿液排出之膀胱上皮細胞之DNA修飾分析來檢測膀胱癌的情形,而偵測特定基因之DNA甲基化程度被認為可以提供膀胱癌診斷與預測的訊息。例如DAPK, RARβ、E-cadherin與p16基因被發現,在膀胱癌形成初期有高度DNA甲基化的情形。根據我們先前的研究顯示,在處理能夠引發膀胱癌的亞硝酸胺類致癌劑BBN餵食後的小鼠,利用2D電泳分析其膀胱黏膜層蛋白質,發現某些顯著下降的蛋白質,其中包括去毒性蛋白Glutathione-S-transferase Mu1 (GSTM1)等。而基因下調的機轉是否為透過GSTM1基因上之5’-CpG島的DNA甲基化這條路徑?為了探討此點,我們設計了細胞實驗與動物實驗來證明。因此,在本實驗中利用RT-PCR及Western Blotting技術觀察在去甲基化試劑5-aza-2’-deoxycytidine或zebularine處理下7株不同癌化程度之膀胱癌上皮細胞株其GSTM1基因表現情形,發現J82膀胱癌上皮細胞株其GSTM1基因表現有明顯增加的情形,表示在J82細胞株中可能經由DNA甲基化下調節GSTM1基因表現。此外,我們也分析6株不同癌化程度之人類膀胱癌細胞株及比較控制組和處理BBN誘導膀胱癌的小鼠模式其膀胱上皮細胞genomic DNA之DNA甲基化情形,結果發現在人類膀胱癌細胞株中5’-CpG島表現高程度的DNA甲基化現象,除了T24細胞株。此外,我們也分析在去甲基化試劑5-aza-2’-deoxycytidine處理下GSTM1基因表現上調節的J82細胞株其DNA甲基化情形,結果顯示J82細胞株在去甲基化試劑處理下GSTM1 DNA甲基化程度下降的幅度不大(約13.5%),而合用組蛋白乙醯化抑制劑TSA藥物雖然增加J82細胞株GSTM1基因表現,但其DNA甲基化程度與單獨使用5-aza-2’-deoxycytidine處理差異不大。此外,在小鼠膀胱癌細胞MB49中GSTM1基因表現受DNA甲基化影響並不大,但合用組蛋白乙醯化抑制劑Trichostatin A藥物處理可協助5-aza-2’-deoxycytidine去甲基化作用使得GSTM1基因表現量增加。而動物模型中BBN水處理組的小鼠膀胱上皮細胞其GSTM1基因甲基化程度並不高,但GSTM1基因/promoter區域之平均DNA甲基化程度在處理BBN的小鼠膀胱黏膜層細胞中 (1.32 %) 略高於控制組的小鼠膀胱黏膜層細胞 (0.5 %),推測DNA甲基化所造成的基因關閉在小鼠模式中造成GSTM1蛋白質下降的影響不大。而在我們測試的6株人類膀胱癌細胞株中有5株有高程度的GSTM1基因/promoter DNA甲基化現象,因此GSTM1基因的甲基化或許可作為人類膀胱癌檢測的參考,但不適用於BBN所誘導的小鼠膀胱癌。
According to the statistics of Taiwan Cancer Registration, bladder cancer is one of the common urinary system cancers. The most efficient method for diagnosing cancer of the bladder is cystoscopy along with biopsy of suspicious lesions. However, the process of examination is invasive and uncomfortable. Many studies of bladder cancer detection tend to focus on DNA modification in the voiding bladder epithelial cells. Detection of specific DNA methylation can be a diagnostic and prognostic information of bladder cancer. For example, DAPK, RARβ, E-cadherin and p16 genes have been shown to have a high degree of methylation in the early stage of bladder cancer. In our previous study, we found that the glutathione-S-transferase Mu1 (GSTM1) protein expression is significantly down-regulated in carcinogen N-butyl-N-(4-hydroxybutyl) nitrosamine (BBN)-treated mice bladder. In order to study whether the down-regulated GSTM1 protein was due to gene methylated on its 5' CpG islands or not, we designed experiments in vitro and in vivo. In vitro study, we observed that the mRNA and protein expression of GSTM1 in 7 human bladder cancer cell lines, which are identified in tumor grade I~III. It showed that GSTM1 gene expression was up-regulated under a treatment of demethylation drug 5-aza-2’-deoxycytidine or zebularine in J82 cells. The data suggested that GSTM1 may be down-regulated by DNA methylation in this cell line. Next, we used bisulfite conversion and PCR followed by T&;A cloning and sequencing to analyze the CpG islands methylation site of GSTM1 gene promoter in 6 human bladder cancer cell lines. The results revealed that high DNA methylation level was present in human GSTM1 5' CpG islands in all cell lines except T24. Besides, the DNA methylation level of J82 GSTM1 gene was also studied after demethylation agent treatment. The result revealed that DNA methylation level decreases slightly in demethylation agent-treated J82 cells (about 13.5%). Although the GSTM1 gene expression of J82 cell lines up-regulated under the treatment of 5-aza-2’-deoxycytidine and trichostatin A, the GSTM1 DNA methylation level decreased a little. Otherwise, GSTM1 gene expression in mice bladder cancer cell lines MB49 was affected slightly by DNA methylation. But GSTM1 gene expression increased under the treatment of 5-aza-2’-deoxycytidine and trichostatin A combination more than 5-aza-2’-deoxycytidine alone. In animal model study, we observed the GSTM1 protein expression are down-regulated obviously in BBN-treated mice. However, the DNA methylation level of mice GSTM1 gene CpG island was always low. The average of GSTM1 methylation level was a little increased in BBN-treated mice (1.32%) compared to control mice (0.5%). Based on these findings, it suggested that GSTM1 protein down-regulation was mediated by DNA methylation in a little part in BBN-treated mice. In human bladder cancer cells, 5 of 6 cell lines have high methylation level in GSTM1 gene CpG island. Therefore, GSTM1 gene methylation level maybe a diagnostic target in human bladder cancer, but not in BBN-induced mice bladder cancer.
Abstract ................................................................................................................... 5
中文摘要 ................................................................................................................. 7
第一章、 序論...................................................................................................... 10
第一節、 膀胱癌 (Bladder cancer) ................................................................. 10
一、 膀胱之功能與結構 ............................................................................. 10
二、 膀胱癌之流行病學及種類 ................................................................. 11
三、 膀胱癌之分期 ..................................................................................... 14
四、膀胱癌之治療及預後 ............................................................................ 15
第二節、 N-butyl-N-(4-hydroxybutyl)nitrosamine (BBN) ............................. 17
一、 BBN介紹 ............................................................................................ 17
二、 BBN代謝途徑及相關機轉 ................................................................ 18
第三節、 DNA甲基化與癌症 ........................................................................ 20
一、 表觀遺傳學 ......................................................................................... 20
二、 與膀胱癌相關之DNA甲基化研究 ................................................... 25
第四節、 穀胱甘肽 S-轉移酶(Glutathione-S-transferase,GSTs) ................ 27
一、 GST gene family .................................................................................. 27
二、 GSTM family與基因多型性 .............................................................. 29
三、 GSTM1與膀胱癌相關之研究 ........................................................... 30
第五節、 實驗目的 .......................................................................................... 32
第二章、 材料與方法 ......................................................................................... 33
一、材料............................................................................................................ 33
(一)人類細胞膀胱癌上皮細胞株.................................................................. 33
(二)細胞實驗 .................................................................................................. 33
(三)逆轉錄聚合酶鍊式反應 .......................................................................... 34
(四)西方墨點法 .............................................................................................. 35
3
(五)Bisulfite Specific PCR and T&;A clone ................................................... 36
二、方法............................................................................................................ 36
(一)細胞培養 .................................................................................................. 36
(二)細胞RNA萃取 ....................................................................................... 39
(三)逆轉錄聚合酶鍊式反應 .......................................................................... 39
(四)西方墨點法 .............................................................................................. 41
(五) 抽取細胞之genomic DNA ................................................................... 43
(六) Bisulfite conversion ................................................................................ 44
(七) Bisulfite conversion後之PCR設計 ...................................................... 45
(八) Bisulfite conversion後之T&;A cloning及定序分析............................ 46
(九) 小鼠實驗設計 ........................................................................................ 47
第三章、 結果...................................................................................................... 48
第四章、 討論...................................................................................................... 59
第五章、 結論...................................................................................................... 66
第六章、 參考文獻 ............................................................................................. 67
第七章、 未來計劃 ............................................................................................. 90
1. Medical, P., Analysis of bladder srtucture 2012.
2. Society, A.C., American Cancer Society. Cancer Facts &; Figures 2015. 2015.
3. Welfare, M.o.H.a., 102年國人死因統計結果. 2014.
4. Health Promotion Administration, M.o.H.a.W., cancer statistics. 2015.
5. Anthony R. Mundy, J.F., David E. Neal &; George, N. J. R. . The Scientific Basis of Urology, Third Edition. 2010.
6. van den Bosch, S., J. Alfred Witjes, Long-term cancer-specific survival in patients with high-risk, non-muscle-invasive bladder cancer and tumour progression: a systematic review. Eur Urol, 2011. 60(3): p. 493-500.
7. Carradori, S., C. Cristini, D. Secci, C. Gulia, V. Gentile, G.B. Di Pierro, Current and emerging strategies in bladder cancer. Anticancer Agents Med Chem, 2012. 12(6): p. 589-603.
8. Leliveld, A.M., E. Bastiaannet, B.H. Doornweerd, M. Schaapveld, I.J. de Jong, High risk bladder cancer: current management and survival. Int Braz J Urol, 2011. 37(2): p. 203-210.
9. Dhawan, D., A.B. Jeffreys, R. Zheng, J.C. Stewart, D.W. Knapp, Cyclooxygenase-2 dependent and independent antitumor effects induced by celecoxib in urinary bladder cancer cells. Mol Cancer Ther, 2008. 7(4): p. 897-904.
10. REGISTRY, T.C. Cancer Incidence Rate in Taiwan, 2014-2012.; Available from: http://tcr.cph.ntu.edu.tw/main.php Page=A5.
11. Babjuk, M., M. Burger, R. Zigeuner, S.F. Shariat, B.W. van Rhijn, E. Comperat, R.J. Sylvester, E. Kaasinen, A. Bohle, J. Palou Redorta, M. Roupret, U. European Association of, EAU guidelines on non-muscle-invasive urothelial carcinoma of the bladder: update 2013. Eur Urol, 2013. 64(4): p. 639-653.
12. Publications, H.M.s.H.W.b.H.H. Bladder cancer: Men at risk. 2011.
13. Sharma, S., P. Ksheersagar, P. Sharma, Diagnosis and treatment of bladder cancer. Am Fam Physician, 2009. 80(7): p. 717-723.
14. Lightfoot, A.J., B.N. Breyer, H.M. Rosevear, B.A. Erickson, B.R. Konety, M.A. O'Donnell, Multi-institutional analysis of sequential intravesical gemcitabine and mitomycin C chemotherapy for non-muscle invasive bladder cancer. Urol Oncol, 2014. 32(1): p. 35 e15-9.
15. Kiemeney, L.A., J.A. Witjes, R.P. Heijbroek, A.L. Verbeek, F.M. Debruyne, Predictability of recurrent and progressive disease in individual patients with primary superficial bladder cancer. J Urol, 1993. 150(1): p. 60-64.
16. Bellmunt, J., A. Orsola, J.J. Leow, T. Wiegel, M. De Santis, A. Horwich, E.G.W. Group, B.R. Konety, M.A. O'Donnell, Bladder cancer: ESMO Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol, 2014. 25 Suppl 3: p. iii40-48.
17. Nicholson, B.D., J.S. McGrath, W. Hamilton, Bladder cancer in women. BMJ, 2014. 348: p. g2171.
18. Erturk, E., S.M. Cohen, J.M. Price, G.T. Bryan, Pathogenesis, histology, and transplantability of urinary bladder carcinomas induced in albino rats by oral administration of N-(4-(5-nitro-2-furyl)-2-thiazolyl)formamide. Cancer Res, 1969. 29(12): p. 2219-2228.
19. Oyasu, R., T. Iwasaki, M. Matsumoto, Y. Hirao, Y. Tabuchi, Induction of tumors in heterotopic bladder by topical application of N-methyl-N-nitrosourea and N-butyl-N-(3-carboxypropyl)nitrosamine. Cancer Res, 1978. 38(9): p. 3019-3025.
20. Steinberg, G.D., C.B. Brendler, T. Ichikawa, R.A. Squire, J.T. Isaacs, Characterization of an N-methyl-N-nitrosourea-induced autochthonous rat bladder cancer model. Cancer Res, 1990. 50(20): p. 6668-6674.
21. Lubet, R.A., V.E. Steele, M.M. Juliana, C.J. Grubbs, Screening agents for preventive efficacy in a bladder cancer model: study design, end points, and gefitinib and naproxen efficacy. J Urol, 2010. 183(4): p. 1598-1603.
22. Williams, P.D., J.K. Lee, D. Theodorescu, Molecular credentialing of rodent bladder carcinogenesis models. Neoplasia, 2008. 10(8): p. 838-846.
23. Tyagi, A., K. Raina, R.P. Singh, M. Gu, C. Agarwal, G. Harrison, L.M. Glode, R. Agarwal, Chemopreventive effects of silymarin and silibinin on N-butyl-N-(4-hydroxybutyl) nitrosamine induced urinary bladder carcinogenesis in male ICR mice. Mol Cancer Ther, 2007. 6(12 Pt 1): p. 3248-3255.
24. Okada, M., M. Ishidate, Metabolic fate of N-n-butyl-N-(4-hydroxybutyl)-nitrosamine and its analogues. Selective induction of urinary bladder tumours in the rat. Xenobiotica, 1977. 7(1-2): p. 11-24.
25. Mochizuki, M., E. Suzuki, M. Okada, Structure and metabolic fate of N-nitrosodialkylamines in relation to their organotropic carcinogenicity with special reference to induction of urinary bladder tumors. Yakugaku Zasshi, 1997. 117(10-11): p. 884-894.
26. Suzuki, E., T. Anjo, J. Aoki, M. Okada, Species variations in the metabolism of N-butyl-N-(4-hydroxybutyl) nitrosamine and related compounds in relation to urinary bladder carcinogenesis. Gan, 1983. 74(1): p. 60-68.
27. Airoldi, L., C. Magagnotti, M. Bonfanti, R. Fanelli, Alpha-oxidative metabolism of the bladder carcinogens N-nitrosobutyl(4-hydroxybutyl)amine and N-nitrosobutyl(3-carboxypropyl)amine within the rat isolated bladder. Carcinogenesis, 1990. 11(8): p. 1437-1440.
28. Vasconcelos-Nobrega, C., A. Colaco, C. Lopes, P.A. Oliveira, Review: BBN as an urothelial carcinogen. In Vivo, 2012. 26(4): p. 727-739.
29. Baylin, S.B., P.A. Jones, A decade of exploring the cancer epigenome - biological and translational implications. Nat Rev Cancer, 2011. 11(10): p. 726-734.
30. Berdasco, M., M. Esteller, Aberrant epigenetic landscape in cancer: how cellular identity goes awry. Dev Cell, 2010. 19(5): p. 698-711.
31. Shen, H., P.W. Laird, Interplay between the cancer genome and epigenome. Cell, 2013. 153(1): p. 38-55.
32. Heyn, H., M. Esteller, DNA methylation profiling in the clinic: applications and challenges. Nat Rev Genet, 2012. 13(10): p. 679-92.
33. Rius, M., F. Lyko, Epigenetic cancer therapy: rationales, targets and drugs. Oncogene, 2012. 31(39): p. 4257-4265.
34. Chen, T., S. Hevi, F. Gay, N. Tsujimoto, T. He, B. Zhang, Y. Ueda, E. Li, Complete inactivation of DNMT1 leads to mitotic catastrophe in human cancer cells. Nat Genet, 2007. 39(3): p. 391-396.
35. Klengel, T., J. Pape, E.B. Binder, D. Mehta, The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology, 2014. 80: p. 115-132.
36. Na, K.S., H.S. Chang, E. Won, K.M. Han, S. Choi, W.S. Tae, H.K. Yoon, Y.K. Kim, S.H. Joe, I.K. Jung, M.S. Lee, B.J. Ham, Association between glucocorticoid receptor methylation and hippocampal subfields in major depressive disorder. PLoS One, 2014. 9(1): p. e85425.
37. Pfeifer, G.P., S. Kadam, S.G. Jin, 5-hydroxymethylcytosine and its potential roles in development and cancer. Epigenetics Chromatin, 2013. 6(1): p. 10.
38. Tahiliani, M., K.P. Koh, Y. Shen, W.A. Pastor, H. Bandukwala, Y. Brudno, S. Agarwal, L.M. Iyer, D.R. Liu, L. Aravind, A. Rao, Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science, 2009. 324(5929): p. 930-935.
39. Ito, S., A.C. D'Alessio, O.V. Taranova, K. Hong, L.C. Sowers, Y. Zhang, Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature, 2010. 466(7310): p. 1129-1133.
40. Globisch, D., M. Munzel, M. Muller, S. Michalakis, M. Wagner, S. Koch, T. Bruckl, M. Biel, T. Carell, Tissue distribution of 5-hydroxymethylcytosine and search for active demethylation intermediates. PLoS One, 2010. 5(12): p. e15367.
41. Jin, S.G., X. Wu, A.X. Li, G.P. Pfeifer, Genomic mapping of 5-hydroxymethylcytosine in the human brain. Nucleic Acids Res, 2011. 39(12): p. 5015-5024.
42. Song, C.X., K.E. Szulwach, Y. Fu, Q. Dai, C. Yi, X. Li, Y. Li, C.H. Chen, W. Zhang, X. Jian, J. Wang, L. Zhang, T.J. Looney, B. Zhang, L.A. Godley, L.M. Hicks, B.T. Lahn, P. Jin, C. He, Selective chemical labeling reveals the genome-wide distribution of 5-hydroxymethylcytosine. Nat Biotechnol, 2011. 29(1): p. 68-72.
43. Wu, H., A.C. D'Alessio, S. Ito, Z. Wang, K. Cui, K. Zhao, Y.E. Sun, Y. Zhang, Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual function in transcriptional regulation in mouse embryonic stem cells. Genes Dev, 2011. 25(7): p. 679-684.
44. Li, W., M. Liu, Distribution of 5-hydroxymethylcytosine in different human tissues. J Nucleic Acids, 2011. 2011: p. 870726.
45. Saheb, A., S. Patterson, M. Josowicz, Probing for DNA methylation with a voltammetric DNA detector. Analyst, 2014. 139(4): p. 786-792.
46. Department of Physics, C.a.B., Linköping University, Sweden, MATER METHODS 2013, 2013. 3: p. 206.
47. Allfrey, V.G., R. Faulkner, A.E. Mirsky, Acetylation and Methylation of Histones and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U S A, 1964. 51: p. 786-794.
48. Dokmanovic, M., C. Clarke, P.A. Marks, Histone deacetylase inhibitors: overview and perspectives. Mol Cancer Res, 2007. 5(10): p. 981-989.
49. Nishioka, K., S. Chuikov, K. Sarma, H. Erdjument-Bromage, C.D. Allis, P. Tempst, D. Reinberg, Set9, a novel histone H3 methyltransferase that facilitates transcription by precluding histone tail modifications required for heterochromatin formation. Genes Dev, 2002. 16(4): p. 479-489.
50. Wang, H., R. Cao, L. Xia, H. Erdjument-Bromage, C. Borchers, P. Tempst, Y. Zhang, Purification and functional characterization of a histone H3-lysine 4-specific methyltransferase. Mol Cell, 2001. 8(6): p. 1207-1217.
51. Greer, E.L., Y. Shi, Histone methylation: a dynamic mark in health, disease and inheritance. Nat Rev Genet, 2012. 13(5): p. 343-357.
52. House, S.H., Epigenetics in adaptive evolution and development: The interplay between evolving species and epigenetic mechanisms: Extract from Trygve Tollefsbol (ed.) (2011) Handbook of Epigenetics - The New Molecular and Medical Genetics. Chapter 26. Amsterdam, USA: Elsevier, pp. 423-446. Nutr Health, 2013. 22(2): p. 105-131.
53. Cui, X.S., D.X. Zhang, Y.G. Ko, N.H. Kim, Aberrant epigenetic reprogramming of imprinted microRNA-127 and Rtl1 in cloned mouse embryos. Biochem Biophys Res Commun, 2009. 379(2): p. 390-394.
54. Garzon, R., G.A. Calin, C.M. Croce, MicroRNAs in Cancer. Annu Rev Med, 2009. 60: p. 167-179.
55. Esteller, M., Non-coding RNAs in human disease. Nat Rev Genet, 2011. 12(12): p. 861-874.
56. Ventura, A., T. Jacks, MicroRNAs and cancer: short RNAs go a long way. Cell, 2009. 136(4): p. 586-591.
57. Fabbri, M., G.A. Calin, Epigenetics and miRNAs in human cancer. Adv Genet, 2010. 70: p. 87-99.
58. Davalos, V., M. Esteller, MicroRNAs and cancer epigenetics: a macrorevolution. Curr Opin Oncol, 2010. 22(1): p. 35-45.
59. Ayala de la Pena, F., K. Kanasaki, M. Kanasaki, N. Tangirala, G. Maeda, R. Kalluri, Loss of p53 and acquisition of angiogenic microRNA profile are insufficient to facilitate progression of bladder urothelial carcinoma in situ to invasive carcinoma. J Biol Chem, 2011. 286(23): p. 20778-20787.
60. Dyrskjot, L., M.S. Ostenfeld, J.B. Bramsen, A.N. Silahtaroglu, P. Lamy, R. Ramanathan, N. Fristrup, J.L. Jensen, C.L. Andersen, K. Zieger, S. Kauppinen, B.P. Ulhoi, J. Kjems, M. Borre, T.F. Orntoft, Genomic profiling of microRNAs in bladder cancer: miR-129 is associated with poor outcome and promotes cell death in vitro. Cancer Res, 2009. 69(11): p. 4851-4860.
61. Han, Y., J. Chen, X. Zhao, C. Liang, Y. Wang, L. Sun, Z. Jiang, Z. Zhang, R. Yang, J. Chen, Z. Li, A. Tang, X. Li, J. Ye, Z. Guan, Y. Gui, Z. Cai, MicroRNA expression signatures of bladder cancer revealed by deep sequencing. PLoS One, 2011. 6(3): p. e18286.
62. Ichimi, T., H. Enokida, Y. Okuno, R. Kunimoto, T. Chiyomaru, K. Kawamoto, K. Kawahara, K. Toki, K. Kawakami, K. Nishiyama, G. Tsujimoto, M. Nakagawa, N. Seki, Identification of novel microRNA targets based on microRNA signatures in bladder cancer. Int J Cancer, 2009. 125(2): p. 345-352.
63. Sorensen, K.P., M. Thomassen, Q. Tan, M. Bak, S. Cold, M. Burton, M.J. Larsen, T.A. Kruse, Long non-coding RNA expression profiles predict metastasis in lymph node-negative breast cancer independently of traditional prognostic markers. Breast Cancer Res, 2015. 17(1): p. 55.
64. Hirano, T., H. Siomi, Small RNAs: Artificial piRNAs for Transcriptional Silencing. Curr Biol, 2015. 25(7): p. R280-283.
65. Yang, F., X. Deng, W. Ma, J.B. Berletch, N. Rabaia, G. Wei, J.M. Moore, G.N. Filippova, J. Xu, Y. Liu, W.S. Noble, J. Shendure, C.M. Disteche, The lncRNA Firre anchors the inactive X chromosome to the nucleolus by binding CTCF and maintains H3K27me3 methylation. Genome Biol, 2015. 16(1): p. 52.
66. Podkaminski, D., J. Vogel, W.S. Noble, J. Shendure, C.M. Disteche, Small RNAs promote mRNA stability to activate the synthesis of virulence factors. Mol Microbiol, 2010. 78(6): p. 1327-1331.
67. Desnoyers, G., E. Masse, Activity of small RNAs on the stability of targeted mRNAs in vivo. Methods Mol Biol, 2012. 905: p. 245-255.
68. Saze, H., K. Tsugane, T. Kanno, T. Nishimura, DNA methylation in plants: relationship to small RNAs and histone modifications, and functions in transposon inactivation. Plant Cell Physiol, 2012. 53(5): p. 766-784.
69. Chen, H., Y. Yu, S. Rong, H. Wang, Evaluation of diagnostic accuracy of DNA methylation biomarkers for bladder cancer: a systematic review and meta-analysis. Biomarkers, 2014. 19(3): p. 189-197.
70. Laird, P.W., Principles and challenges of genomewide DNA methylation analysis. Nat Rev Genet, 2010. 11(3): p. 191-203.
71. Rodriguez-Paredes, M., M. Esteller, Cancer epigenetics reaches mainstream oncology. Nat Med, 2011. 17(3): p. 330-339.
72. Rhee, I., K.E. Bachman, B.H. Park, K.W. Jair, R.W. Yen, K.E. Schuebel, H. Cui, A.P. Feinberg, C. Lengauer, K.W. Kinzler, S.B. Baylin, B. Vogelstein, DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002. 416(6880): p. 552-556.
73. Chan, M.W., L.W. Chan, N.L. Tang, J.H. Tong, K.W. Lo, T.L. Lee, H.Y. Cheung, W.S. Wong, P.S. Chan, F.M. Lai, K.F. To, Hypermethylation of multiple genes in tumor tissues and voided urine in urinary bladder cancer patients. Clin Cancer Res, 2002. 8(2): p. 464-470.
74. Sapre, N., P.D. Anderson, A.J. Costello, C.M. Hovens, N.M. Corcoran, Gene-based urinary biomarkers for bladder cancer: an unfulfilled promise? Urol Oncol, 2014. 32(1): p. e9-17.
75. Jiang, Z., C. Li, X. Wang, Glutathione S-transferase M1 polymorphism and bladder cancer risk: a meta-analysis involving 33 studies. Exp Biol Med (Maywood), 2011. 236(6): p. 723-728.
76. Dadbinpour, A., M.H. Sheikhha, M. Darbouy, M. Afkhami-Ardekani, Investigating GSTT1 and GSTM1 null genotype as the risk factor of diabetes type 2 retinopathy. J Diabetes Metab Disord, 2013. 12(1): p. 48.
77. Filippova, I.N., A.V. Khrunin, S.A. Limborska, Analysis of DNA variations in GSTA and GSTM gene clusters based on the results of genome-wide data from three Russian populations taken as an example. BMC Genet, 2012. 13: p. 89.
78. Simic, T., A. Savic-Radojevic, M. Pljesa-Ercegovac, M. Matic, J. Mimic-Oka, Glutathione S-transferases in kidney and urinary bladder tumors. Nat Rev Urol, 2009. 6(5): p. 281-289.
79. Mannervik, B., Y.C. Awasthi, P.G. Board, J.D. Hayes, C. Di Ilio, B. Ketterer, I. Listowsky, R. Morgenstern, M. Muramatsu, W.R. Pearson, et al., Nomenclature for human glutathione transferases. Biochem J, 1992. 282 ( Pt 1): p. 305-306.
80. Hayes, J.D., R.C. Strange, Glutathione S-transferase polymorphisms and their biological consequences. Pharmacology, 2000. 61(3): p. 154-166.
81. Parl, F.F., Glutathione S-transferase genotypes and cancer risk. Cancer Lett, 2005. 221(2): p. 123-129.
82. Xu, S., Y. Wang, B. Roe, W.R. Pearson, Characterization of the human class Mu glutathione S-transferase gene cluster and the GSTM1 deletion. J Biol Chem, 1998. 273(6): p. 3517-3527.
83. Suzuki, T., M. Coggan, D.C. Shaw, P.G. Board, Electrophoretic and immunological analysis of human glutathione S-transferase isozymes. Ann Hum Genet, 1987. 51(Pt 2): p. 95-106.
84. Pemble, S., K.R. Schroeder, S.R. Spencer, D.J. Meyer, E. Hallier, H.M. Bolt, B. Ketterer, J.B. Taylor, Human glutathione S-transferase theta (GSTT1): cDNA cloning and the characterization of a genetic polymorphism. Biochem J, 1994. 300 ( Pt 1): p. 271-276.
85. Fang, J., S. Wang, S. Zhang, S. Su, Z. Song, Y. Deng, H. Cui, H. Wang, Y. Zhang, J. Qian, J. Gu, B. Liu, P. Li, R. Zhang, X. Liu, Z. Wang, Association of the glutathione s-transferase m1, t1 polymorphisms with cancer: evidence from a meta-analysis. PLoS One, 2013. 8(11): p. e78707.
86. Matic, M., T. Pekmezovic, T. Djukic, J. Mimic-Oka, D. Dragicevic, B. Krivic, S. Suvakov, A. Savic-Radojevic, M. Pljesa-Ercegovac, C. Tulic, V. Coric, T. Simic, GSTA1, GSTM1, GSTP1, and GSTT1 polymorphisms and susceptibility to smoking-related bladder cancer: a case-control study. Urol Oncol, 2013. 31(7): p. 1184-1192.
87. SJ., C., GSTM1, Cancer Genetics. Thu Apr 30 2015.
88. Bhattacharjee, P., S. Paul, M. Banerjee, D. Patra, P. Banerjee, N. Ghoshal, A. Bandyopadhyay, A.K. Giri, Functional compensation of glutathione S-transferase M1 (GSTM1) null by another GST superfamily member, GSTM2. Sci Rep, 2013. 3: p. 2704.
89. Chuang, J.J., Y.C. Dai, Y.L. Lin, Y.Y. Chen, W.H. Lin, H.L. Chan, Y.W. Liu, Downregulation of glutathione S-transferase M1 protein in N-butyl-N-(4-hydroxybutyl)nitrosamine-induced mouse bladder carcinogenesis. Toxicol Appl Pharmacol, 2014. 279(3): p. 322-330.
90. Liu, S., F. Wang, L. Yan, L. Zhang, Y. Song, S. Xi, J. Jia, G. Sun, Oxidative stress and MAPK involved into ATF2 expression in immortalized human urothelial cells treated by arsenic. Arch Toxicol, 2013. 87(6): p. 981-989.
91. Lin, P.Y., Y.L. Lin, C.C. Huang, S.S. Chen, Y.W. Liu, Inorganic arsenic in drinking water accelerates N-butyl-N-(4-hydroxybutyl)nitrosamine-induced bladder tissue damage in mice. Toxicol Appl Pharmacol, 2012. 259(1): p. 27-37.
92. Andersen, J.B., V.M. Factor, J.U. Marquardt, C. Raggi, Y.H. Lee, D. Seo, E.A. Conner, S.S. Thorgeirsson, An integrated genomic and epigenomic approach predicts therapeutic response to zebularine in human liver cancer. Sci Transl Med, 2010. 2(54): p. 54ra77.
93. Vallot, C., N. Stransky, I. Bernard-Pierrot, A. Herault, J. Zucman-Rossi, E. Chapeaublanc, D. Vordos, A. Laplanche, S. Benhamou, T. Lebret, J. Southgate, Y. Allory, F. Radvanyi, A novel epigenetic phenotype associated with the most aggressive pathway of bladder tumor progression. J Natl Cancer Inst, 2011. 103(1): p. 47-60.
94. Tang, S.C., G.T. Sheu, R.H. Wong, C.Y. Huang, M.W. Weng, L.W. Lee, C.P. Hsu, J.L. Ko, Expression of glutathione S-transferase M2 in stage I/II non-small cell lung cancer and alleviation of DNA damage exposure to benzo[a]pyrene. Toxicol Lett, 2010. 192(3): p. 316-323.
95. Tang, S.C., M.F. Wu, R.H. Wong, Y.F. Liu, L.C. Tang, C.H. Lai, C.P. Hsu, J.L. Ko, Epigenetic mechanisms for silencing glutathione S-transferase m2 expression by hypermethylated specificity protein 1 binding in lung cancer. Cancer, 2011. 117(14): p. 3209-3221.
96. Peng, D.F., M. Razvi, H. Chen, K. Washington, A. Roessner, R. Schneider-Stock, W. El-Rifai, DNA hypermethylation regulates the expression of members of the Mu-class glutathione S-transferases and glutathione peroxidases in Barrett's adenocarcinoma. Gut, 2009. 58(1): p. 5-15.
97. Tang, S.C., M.F. Wu, R.H. Wong, Y.F. Liu, L.C. Tang, C.H. Lai, C.P. Hsu, J.L. Ko, Epigenetic mechanisms for silencing glutathione S-transferase m2 expression by hypermethylated specificity protein 1 binding in lung cancer. Cancer, 2011. 117(14): p. 3209-3221.
98. Kumar, A., E.P. Reddy, Genomic organization and characterization of the promoter region of murine GSTM2 gene. Gene, 2001. 270(1-2): p. 221-229.
99. Walsh, J., R.E. Jenkins, M. Wong, A. Olayanju, H. Powell, I. Copple, P.M. O'Neill, C.E. Goldring, N.R. Kitteringham, B.K. Park, Identification and quantification of the basal and inducible Nrf2-dependent proteomes in mouse liver: biochemical, pharmacological and toxicological implications. J Proteomics, 2014. 108: p. 171-187.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top