|
甘媛源與余嘉元(2009)。心理測量理論的新進展:潛在分類模型。中國考試,2009(3),3-8。 余民寧(2009)。試題反應理論(IRT)及其應用。臺北市:心理出版社。 涂金堂(2003)。認知診斷評量的探究。臺南師範學院學報,37(2):67-97。 洪祥堯(2009)。資訊科技融入國小六年級圓形圖單元教學與評量之行動研究。亞 洲大學資訊工程學系碩士論文,未出版,臺中縣。
英文部份 Bock, R. D. & Aitkin, M. (1981) Marginal maximum likelihood estimation of item parameters:Application of an EM algorithm. Psychometrika, 46, 443-459. Cheng, Y., & Chang, H. (2009). When cognitive diagnosis meets computerized adaptive testing: CD-CAT. Psychometrika, 74(4), 619–632. de la Torre, J., & Douglas, J. (2004). Higher-order latent trait models for cognitive diagnosis. Psychometrika. 69(3),333-353. de la Torre, J., & Douglas, J. (2008). Model evaluation and multiple strategies in cognitive diagnosis: An analysis of fraction subtraction data. Psychometrika,73(4), 595-624. de la Torre, J., & Liu, Y. (2008, March). A cognitive diagnosis model for continuous response. Paper presented at the meeting of the National Council on Measurement in Education, New York, NY. de la Torre, J. (2009a). DINA model and parameter estimation: A didactic. Journal of Educational and Behavioral Statistics, 34, 115-130. de la Torre, J. (2009b). A cognitive diagnosis model for cognitively-based multiple-choice options. Applied Psychological Measurement, 33, 163-183.
de la Torre, J.,& Lee (2010). A note on the invariance of DINA model parameters. Journal of Measurements, 47, 115-127. Doornik, J. A. (2003). Object-oriented matrix programming using Ox (Version 3.1). [Computer software]. London, England: Timberlake Consultants Press. Doignon, J.P., & Falmagne, J.C. (1999). Knowledge spaces. New York: Springer. Educational Testing Service (2004). Arpeggio: Release 1.1[Computer software]. Princeton, NJ: Author. Fischer, G. H. (1973). The linear logistic test model as an instrument in educational research. Acta Psychologica, 37,59-374. Finkelman, M., Kim, W., & Roussos, L. (2009). Automated test assembly for cognitive diagnostic models using a genetic algorithm. Journal of Educational Measurement, 46 (3), 273-292. Geman, S., & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images. IEEE Transcationa on Pattern Analysis and Machine Intelligence, 6, 721-741. Gierl, M., Cui, Y., & Zhou, J. (2009). Reliability and attribute-based scoring in cognitive diagnostic assessment. Journal of Educational Measurement, 46 (3), 293-313. Henson, R. A., & Douglas, J. (2005). Test construction for cognitive diagnosis. Applied Psychological Measurement, 29 (4), 262-277. Hartz, S. (2002). A Bayesian framework for the Unified Model for assessing cognitive abilities: blending theory with practice. Unpublished doctoral thesis, University of Illinois at Urbana-Champain. Henson, R., Templin J., & Willse, J. (2009). Defining a family of cognitive diagnosis models using log-linear models with latent variables. Psychometrika, 74(2), 191-210. Huebner, (2010).Cognitive Diagnostic Computer Adaptive Assessments . Journal of Educational Measurement, 46 (3),293-313.
Huebner, Alan, (2010). An Overview of Recent Developments in Cognitive Diagnostic Computer Adaptive Assessments. Practical Assessment, Research & Evaluation, 15(3), January 2010, form http://pareonline.net/getvn.asp?v=15 &n=3. Junker, B., & Sijtsma, K. (2001). Cognitive assessment models with few assumptions, and connections with nonparametric item response theory. Applied Psychological Measurement, 25(3), 258-272. Leighton, J. P., Gierl, M. J., & Hunka, S. M. (2004). The attribute hierarchy method for cognitive assessment: a variation on Tatsuoka’s rule space approach. Journal of Educational Measurement, 41(3), 205–237. Maris, E. (1999). Estimating multiple classification latent class models. Psychometrika, 64(2), 187-212. McGlohen, M., & Chang, H. (2008). Combining computer adaptive testing technology with cognitively diagnostic assessment. Behavior Research Methods, 40 (3), 808-821. Muthén, L.K., & Muthén, B.O. (1998-2006). M-plus user’s guide(4th ed.). Los Angeles: Muthén, L.K., & Muthén. Patz, R. J., & Junker, B. W. (1999). A straightforward approach to Markov Chain Monte Carlo methods for item response models. Journal of Educational and Behavioral Statistics, 24(2), 146-178. Rupp, A., & Templin, J. (2008). The effects of q-matrix misspecification on parameter Estimates and classification accuracy in the DINA model. Educational and Psychological Measurement, 68(1), 78-96. Sheehan, K, M.(1997). A tree-based approach to proficiency scaling and diagnostic assessment . Journal of Educational Measurement, 34, 333-352. Tatsuoka, K. K. (1983). Rule space: An approach for dealing with misconception based on item response theory. Journal of Educational Measurement, 20, 345-354. Tatsuoka, K. K. (1985).A probabilistic model for diagnosing misconceptions by the pattern classification approach. Journal of Educational Statistics, 10, 55-73.
Templin, J. L., Henson, R. A., L. (2006). Measurement of psychological disorders using cognitive diagnosis models. Psychological Methods, 11(3), 287–305 Templin, J. L., Henson, R. A., Templin, S. E., & Roussos, L. (2008). Robustness of Hierarchical Modeling of Skill Association in Cognitive Diagnosis Models. Applied Psychological Measurement, 32(7), 559–574. Tierney, L. (1994). Exploring posterior distributions with Markov Chains. Annals of Statistics, 22, 1701-1762. von Davier, M. (2005). A General diagnostic model applied to language testing data. ETS Research Report. Princeton, New Jersey: ETS. Xu, X., Chang, H., & Douglas, J. (2003). A simulation study to compare CAT strategies for cognitive diagnosis. Paper presented at the annual meeting of the American Educational Research Association, Chicago. Xu, X. & von Davier, M. (2008). Linking for the general diagnostic model. ETS Research Report. Princeton, New Jersey: ETS.
|