跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.208) 您好!臺灣時間:2025/10/02 23:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁乙珊
研究生(外文):Yi Shan Ding
論文名稱:以Cdc20因子激活的後期促進複合體(APC)之胜肽抑制劑
論文名稱(外文):Peptide inhibitors of Cell Division Cycle 20-dependent Anaphase-Promoting Complex (APCCdc20) activity
指導教授:曲桐
指導教授(外文):S. C. Schuyler
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2016
畢業學年度:104
語文別:英文
論文頁數:59
中文關鍵詞:細胞週期紡錘體檢查點後期促進複合體細胞分裂週期蛋白
外文關鍵詞:cell cyclespindle checkpointAnaphase Promoting ComplexCell Division Cycle 20Mad2-binding motif
相關次數:
  • 被引用被引用:0
  • 點閱點閱:625
  • 評分評分:
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
當紡錘體檢查點偵測到未被附著的著絲點時,可藉由調控一E3泛素連接酶─後期促進複合體(APC)的活性而抑制細胞週期的進行。細胞分裂週期蛋白20 (Cdc20)具有雙重調控功能,既可作為APC的激活因子,促使細胞進入有絲分裂後期,也可透過其Mad2-binding motif (MB-motif)和Mad2交互作用形成有絲分裂檢查點複合體(MCC),延遲細胞周期,使細胞停留在有絲分裂期間。利用試管內的APCCdc20酵素活性定量方法,我們觀察到過量的、含有MB-motif片段的胜肽足以抑制APCCdc20活性,且利用序列經改變之胜肽,初步了解哪些胺基酸殘基影響APCCdc20的作用。除了高度保守的KILR motif,其他保守的胺基酸殘基對於抑制 APCCdc20 活性也扮演著重要角色。此外,我們觀察到MB-motif 胜肽也可抑制APCCdh1活性,顯示這些胜肽可能是透過干擾APC而非Cdc20來達到抑制APCCdc20活性的效果。藉由蛋白質體外結合測試,證實了這些胜肽確實和APC有物理性交互作用。我們推測這些含有MB-motif的胜肽可能和Cdc20上的MB-motif或C-box motif上的結合位競爭,而干擾APCCdc20活性。
The spindle checkpoint prevents cell cycle progression in response to unattached kinetochores by regulating the activity of Anaphase Promoting Complex or Cyclosome (APC), an E3-ubiquitin ligase. Cell Division Cycle 20 (Cdc20) plays a bi-functional role and can either serve as a co-activator of the APC or be targeted for mitotic arrest by interacting with one of the mitotic checkpoint components, Mitotic Arrest Deficient 2 (Mad2) via Mad2-binding motif (MB-motif). By employing an in vitro quantitative APCCdc20 enzyme assay, we have observed that excess amounts of MB-motif-based peptides were sufficient to disrupt APCCdc20 activity. Mutation analyses revealed residues important for inhibition of APCCdc20 activity. In addition to the highly-conserved KILR motif, other conserved amino acids residues were observed to play an essential role in inhibiting APCCdc20 activity. I have also observed the inhibitory effects of MB-motif derived peptides on APCCdh1 enzyme activity, indicating the peptides inhibitors might primarily targeted APC rather than Cdc20. Physical interactions between wild-type and mutant forms of peptides and the APC were demonstrated by pull-down assays. We hypothesize that Cdc20 MB-motif derived peptides may compete with MB-motif or the C-box binding sites on the APC.
Table of Contents
指導教授推薦書…………………………………………………
口試委員會審定書………………………………………………
致謝…………………………………………………………… iii
Chinese Abstract………………………………………………… iv
English Abstract………………………………………………… v
Table of Contents………………………………………………… vi
List of Figures……………………………………………………… ix
List of Tables……………………………………………………… x
Chapter 1 Introduction……………………………………………
1.1 SAC ensure accurate chromosome segregation………… 1
1.2 SAC is activated at kinetochore that lack microtubule attachment or tension………………………………………………………………………………………………… 2
1.3 APC is the downstream target of SAC…………………… 3
1.4 SAC regulates the APC activity by targeting its coactivator,
Cdc20……………………………………………………… 4
1.5 Study rational……………………………………………… 6
Chapter 2 Aims …………………………………………………… 9
Chapter 3 Materials and Methods …………………………………
3.1 Yeast strains, plasmids, media and culture conditions…… 10
3.2 Preparation of yeast extract……………………………… 10
3.3 Isolation of plasmid pSCSB96, pSCSB176, pSCSB183… 12
3.4 Preparation of radioactive-labeled substrate, 35S-Pds1…… 12
3.5 Preparation of co-activator Cdc20 and Cdh1…………… 14
3.6 purification of APC………………………………………… 14
3.7 In vitro enzyme assays for APCCdc20 and APCCdh1 activity… 14
3.8 In vitro enzyme assay for inhibition of APCCdc20 and APCCdh1
activity by MB-motif peptides…………………………… 15
3.9 Data analysis……………………………………………… 16
3.10 APC binding and competition assays………………… 16
Chapter 4 Results
4.1 Investigation of potential peptide inhibitors of APCCdc20 activity
and their ability to bind APC…………………………… 17
4.2 Identification of important amino acid residues for APCCdc20
activity by mutant peptides………………………………… 17
4.2.1 Both mutant forms of DQ36 could disrupt APCCdc20
inhibition……………………………………………… 18
4.2.2 DQ36-Mut2 weakly bound to APC…………………… 18
4.2.3 PQ65-Mut1 decreases APCCdc20 inhibition activity whereas
PQ65-Mut2 does not…………………………………… 19
4.2.4 SQ19-Mut lost ability to inhibit APCCdc20 and bind APC… 19
4.3 DQ36 could compete with DQ36-Mut1 for binding APC… 20
4.4 Inhibitory effects of MB-motif-based peptides are not specific to APCCdc20 and also appear against APCCdh1……………………
4.4.1 DQ36 and PQ65 can disrupt APCCdh1………………… 20
4.4.2 Both DQ36-Mut1 and DQ36-Mut2 could interfere with
APCCdh1 inhibition……………………………………… 20
Chapter 5 Discussion
5.1 MB-motif peptides are able to bind APC and serve as APCCdc20 inhibitors…………………………………………………… 22
5.2 Identification of important amino acid residues for APCCdc20 activity by mutant peptides…………………………………. 22
5.2.1 KILR motif is not required for binding APC but is required for inhibiting APC activity………………………………… 23
5.2.2 Untouched conserved sequences among fungi and yeast contribute to both APC binding and activation………… 23
5.3 Inhibitory effects of MB-motif-based peptides are not specific to
APCCdc20, and also appear against APCCdh1………………… 24
5.4 Unsolved questions and future directions………………… 25
Chapter 6 Figures………………………………………………… 27
Chapter 7 Tables…………………………………………………… 42
References………………………………………………………… 43


List of figures
Figure 1. Analysis of Cdc20 bypass mutant alleles……………… 27
Figure 2. DK27 interact with APC and excess amount of DK27 inhibit APCCdc20 activity………………………………………… 28
Figure 3. DQ36 interact with APC and excess amount of DQ36 inhibit APCCdc20 activity ……………………………………… 29
Figure 4. PQ65 interact with APC and excess amount of PQ65 inhibit APCCdc20 activity ……………………………………… 30
Figure 5. PS46 interact with APC and excess amount of PS46 inhibit APCCdc20 activity ……………………………………… 31
Figure 6. SQ19 interact with APC and excess amount of SQ19 inhibit APCCdc20 activity ……………………………………… 32
Figure 7. Both DQ36-Mut1 and DQ36-Mut2 could disrupt APCCdc20 inhibition. DQ36-Mut2 weakly bound to APC………… 33
Figure 8. PQ65-Mut1 can disrupt APCCdc20 inhibition whereas PQ65-Mut2 cannot ……………………………………………… 35
Figure 9. SQ19-Mut lost ability to inhibit APCCdc20 and bind APC…………… 36
Figure 10. DQ36 could compete with DQ36-Mut1 for binding APC…………… 37
Figure 11. DQ36 and PQ65 can disrupt APCCdh1. …………………… 38
Figure 12. Both DQ36-Mut1 and DQ36-Mut2 could interfere with APCCdh1 inhibition. …………………………………… 39
Figure 13. Summary of the important regions on MB-motif……… 40
Figure 14. Similar sequences shared between MB-motif and C-box motif on Cdc20………………………………………………………… 41


List of tables
Table 1. Sequences of MB-motif-derived peptides………………… 42

1. Hoyt, M. A., Totis, L., & Roberts, B. T. (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell, 66(3), 507-517.
2. Li, R., & Murray, A. W. (1991). Feedback control of mitosis in budding yeast. Cell, 66(3), 519-531.
3. Dobles, M., Liberal, V., Scott, M. L., Benezra, R., & Sorger, P. K. (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell, 101(6), 635-645.
4. Kalitsis, P., Earle, E., Fowler, K. J., & Choo, K. H. (2000). Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev, 14(18), 2277-2282.
5. Basu, J., Bousbaa, H., Logarinho, E., Li, Z., Williams, B. C., Lopes, C., Sunkel, C. E., & Goldberg, M. L. (1999). Mutations in the essential spindle checkpoint gene bub1 cs
6. Michel, L. S., Liberal, V., Chatterjee, A., Kirchwegger, R., Pasche, B., Gerald, W., Dobles, M., Sorger, P. K., Murty, V. V., & Benezra, R. (2001). MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature, 409(6818), 355-359. doi: 10.1038/35053094
7. Nicklas, R. B., & Koch, C. A. (1969). Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J Cell Biol, 43(1), 40-50.
8. Li, X., & Nicklas, R. B. (1995). Mitotic forces control a cell-cycle checkpoint. Nature, 373(6515), 630-632. doi: 10.1038/373630a0
9. Rieder, C. L., Cole, R. W., Khodjakov, A., & Sluder, G. (1995). The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol, 130(4), 941-948.
10. Cleveland, D. W., Mao, Y., & Sullivan, K. F. (2003). Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell, 112(4), 407-421.
11. Rieder, C. L., Schultz, A., Cole, R., & Sluder, G. (1994). Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol, 127(5), 1301-1310.
12. Stern, B. M., & Murray, A. W. (2001). Lack of tension at kinetochores activates the spindle checkpoint in budding yeast. Curr Biol, 11(18), 1462-1467.
13. Chen, R. H., Waters, J. C., Salmon, E. D., & Murray, A. W. (1996). Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science, 274(5285), 242-246.
14. Li, Y., & Benezra, R. (1996). Identification of a human mitotic checkpoint gene: hsMAD2. Science, 274(5285), 246-248.
15. Taylor, S. S., & McKeon, F. (1997). Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell, 89(5), 727-735.
16. Martinez-Exposito, M. J., Kaplan, K. B., Copeland, J., & Sorger, P. K. (1999). Retention of the BUB3 checkpoint protein on lagging chromosomes. Proc Natl Acad Sci U S A, 96(15), 8493-8498.
17. Chen, R. H., Shevchenko, A., Mann, M., & Murray, A. W. (1998). Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol, 143(2), 283-295.
18. Taylor, S. S., Ha, E., & McKeon, F. (1998). The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol, 142(1), 1-11.
19. Waters, J. C., Chen, R. H., Murray, A. W., & Salmon, E. D. (1998). Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J Cell Biol, 141(5), 1181-1191.
20. He, J., Chao, W. C. H., Zhang, Z. G., Yang, J., Cronin, N., & Barford, D. (2013). Insights into Degron Recognition by APC/C Coactivators from the Structure of an Acm1-Cdh1 Complex. Molecular Cell, 50(5), 649-660. doi: 10.1016/j.molcel.2013.04.024
21. Primorac, I., & Musacchio, A. (2013). Panta rhei: The APC/C at steady state. Journal of Cell Biology, 201(2), 177-189. doi: 10.1083/jcb.201301130
22. Chang, L. F., & Barford, D. (2014). Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Current Opinion in Structural Biology, 29, 1-9. doi: 10.1016/j.sbi.2014.08.003
23. den Elzen, N., & Pines, J. (2001). Cyclin a is destroyed in prometaphase and can delay chromosome alignment and anaphase. Journal of Cell Biology, 153(1), 121-135. doi: DOI 10.1083/jcb.153.1.121
24. Hagting, A., den Elzen, N., Vodermaier, H. C., Waizenegger, I. C., Peters, J. M., & Pines, J. (2002). Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. Journal of Cell Biology, 157(7), 1125-1137. doi: 10.1083/jcb.200111001
25. Pines, J. (2006). Mitosis: a matter of getting rid of the right protein at the right time. Trends in Cell Biology, 16(1), 55-63. doi: 10.1016/j.tcb.2005.11.006
26. Sullivan, M., & Morgan, D. O. (2007). Finishing mitosis, one step at a time. Nature Reviews Molecular Cell Biology, 8(11), 894-903. doi: 10.1038/nrm2276
27. Lu, D., Hsiao, J. Y., Davey, N. E., Van Voorhis, V. A., Foster, S. A., Tang, C., & Morgan, D. O. (2014). Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. Journal of Cell Biology, 207(1), 23-39. doi: 10.1083/jcb.201402041
28. Schwab, M., Lutum, A. S., & Seufert, W. (1997). Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell, 90(4), 683-693. doi: Doi 10.1016/S0092-8674(00)80529-2
29. Hwang, L. H., Lau, L. F., Smith, D. L., Mistrot, C. A., Hardwick, K. G., Hwang, E. S., Amon, A., & Murray, A. W. (1998). Budding yeast Cdc20: A target of the spindle checkpoint. Science, 279(5353), 1041-1044. doi: DOI 10.1126/science.279.5353.1041
30. Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A., & Matsumoto, T. (1998). Fission yeast Slp1: An effector of the Mad2-dependent spindle checkpoint. Science, 279(5353), 1045-1047. doi: DOI 10.1126/science.279.5353.1045
31. Chao, W. C., Kulkarni, K., Zhang, Z., Kong, E. H., & Barford, D. (2012). Structure of the mitotic checkpoint complex. Nature, 484(7393), 208-213. doi: 10.1038/nature10896
32. Kraft, C., Vodermaier, H. C., Maurer-Stroh, S., Eisenhaber, F., & Peters, J. M. (2005). The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Molecular Cell, 18(5), 543-553. doi: 10.1016/j.molcel.2005.04.023
33. Foe, I. T., Foster, S. A., Cheung, S. K., DeLuca, S. Z., Morgan, D. O., & Toczyski, D. P. (2011). Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism. Curr Biol, 21(22), 1870-1877. doi: 10.1016/j.cub.2011.09.051
34. Kimata, Y., Baxter, J. E., Fry, A. M., & Yamano, H. (2008). A role for the Fizzy/Cdc20 family of proteins in activation of the APC/C distinct from substrate recruitment. Molecular Cell, 32(4), 576-583. doi: 10.1016/j.molcel.2008.09.023
35. Passmore, L. A., McCormack, E. A., Au, S. W. N., Paul, A., Willison, K. R., Harper, J. W., & Barford, D. (2003). Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. Embo Journal, 22(4), 786-796. doi: DOI 10.1093/emboj/cdg084
36. Vodermaier, H. C., Gieffers, C., Maurer-Stroh, S., Eisenhaber, F., & Peters, J. M. (2003). TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Current Biology, 13(17), 1459-1468. doi: Doi 10.1016/S0960-9822(03)00581-5
37. Sironi, L., Mapelli, M., Knapp, S., De Antoni, A., Jeang, K. T., & Musacchio, A. (2002). Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J, 21(10), 2496-2506. doi: 10.1093/emboj/21.10.2496
38. Luo, X., Fang, G., Coldiron, M., Lin, Y., Yu, H., Kirschner, M. W., & Wagner, G. (2000). Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat Struct Biol, 7(3), 224-229. doi: 10.1038/73338
39. Zhang, Y., & Lees, E. (2001). Identification of an overlapping binding domain on Cdc20 for Mad2 and anaphase-promoting complex: model for spindle checkpoint regulation. Mol Cell Biol, 21(15), 5190-5199. doi: 10.1128/MCB.21.15.5190-5199.2001
40. Varetti, G., Guida, C., Santaguida, S., Chiroli, E., & Musacchio, A. (2011). Homeostatic Control of Mitotic Arrest. Molecular Cell, 44(5), 710-720. doi: DOI 10.1016/j.molcel.2011.11.014
41. Schuyler, S. C., Wu, Y. F., & Kuan, V. J. (2012). The Mad1-Mad2 balancing act--a damaged spindle checkpoint in chromosome instability and cancer. J Cell Sci, 125(Pt 18), 4197-4206. doi: 10.1242/jcs.107037
42. Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology, 8(5), 379-393. doi: Doi 10.1038/Nrm2163
43. Sudakin, V., Chan, G. K. T., & Yen, T. J. (2001). Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. Journal of Cell Biology, 154(5), 925-936. doi: DOI 10.1083/jcb.200102093
44. Fang, G. W., Yu, H. T., & Kirschner, M. W. (1998). The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes & Development, 12(12), 1871-1883. doi: DOI 10.1101/gad.12.12.1871
45. Tang, Z. Y., Bharadwaj, R., Li, B., & Yu, H. T. (2001). Mad2-independent inhibition of APC(Cdc20) by the mitotic checkpoint protein BubR1. Developmental Cell, 1(2), 227-237. doi: Doi 10.1016/S1534-5807(01)00019-3
46. Fang, G. W. (2002). Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Molecular Biology of the Cell, 13(3), 755-766. doi: 10.1091/mbc.01-09-0437
47. Tipton, A. R., Wang, K. X., Link, L., Bellizzi, J. J., Huang, H. M., Yen, T., & Liu, S. T. (2011). BUBR1 and Closed MAD2 (C-MAD2) Interact Directly to Assemble a Functional Mitotic Checkpoint Complex. Journal of Biological Chemistry, 286(24), 21173-21179. doi: 10.1074/jbc.M111.238543
48. De Antoni, A., Pearson, C. G., Cimini, D., Canman, J. C., Sala, V., Nezi, L., Mapelli, M., Sironi, L., Faretta, M., Salmon, E. D., & Musacchio, A. (2005). The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol, 15(3), 214-225. doi: 10.1016/j.cub.2005.01.038
49. Lau, D. T., & Murray, A. W. (2012). Mad2 and Mad3 cooperate to arrest budding yeast in mitosis. Curr Biol, 22(3), 180-190. doi: 10.1016/j.cub.2011.12.029
50. Maldonado, M., & Kapoor, T. M. (2011). Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. Nat Cell Biol, 13(4), 475-482. doi: 10.1038/ncb2223
51. Hewitt, L., Tighe, A., Santaguida, S., White, A. M., Jones, C. D., Musacchio, A., Green, S., & Taylor, S. S. (2010). Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol, 190(1), 25-34. doi: 10.1083/jcb.201002133
52. Vink, M., Simonetta, M., Transidico, P., Ferrari, K., Mapelli, M., De Antoni, A., Massimiliano, L., Ciliberto, A., Faretta, M., Salmon, E. D., & Musacchio, A. (2006). In vitro FRAP identifies the minimal requirements for Mad2 kinetochore dynamics. Curr Biol, 16(8), 755-766. doi: 10.1016/j.cub.2006.03.057
53. Burton, J. L., & Solomon, M. J. (2007). Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev, 21(6), 655-667. doi: 10.1101/gad.1511107
54. Rahmani, Z., Gagou, M. E., Lefebvre, C., Emre, D., & Karess, R. E. (2009). Separating the spindle, checkpoint, and timer functions of BubR1. Journal of Cell Biology, 187(5), 597-605. doi: 10.1083/jcb.200905026
55. Sczaniecka, M., Feoktistova, A., May, K. M., Chen, J. S., Blyth, J., Gould, K. L., & Hardwick, K. G. (2008). The spindle checkpoint functions of Mad3 and Mad2 depend on a Mad3 KEN box-mediated interaction with Cdc20-anaphase-promoting complex (APC/C). Journal of Biological Chemistry, 283(34), 23039-23047. doi: 10.1074/jbc.M803594200
56. Elowe, S., Dulla, K., Uldschmid, A., Li, X. L., Dou, Z., & Nigg, E. A. (2010). Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci, 123(1), 84-94. doi: 10.1242/jcs.056507
57. Izawa, D., & Pines, J. (2012). Mad2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation. J Cell Biol, 199(1), 27-37. doi: 10.1083/jcb.201205170
58. Huang, H.-C., Shi, J., Orth, J. D., & Mitchison, T. J. (2010). Cell death when the SAC is out of commission.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top