|
1. Hoyt, M. A., Totis, L., & Roberts, B. T. (1991). S. cerevisiae genes required for cell cycle arrest in response to loss of microtubule function. Cell, 66(3), 507-517. 2. Li, R., & Murray, A. W. (1991). Feedback control of mitosis in budding yeast. Cell, 66(3), 519-531. 3. Dobles, M., Liberal, V., Scott, M. L., Benezra, R., & Sorger, P. K. (2000). Chromosome missegregation and apoptosis in mice lacking the mitotic checkpoint protein Mad2. Cell, 101(6), 635-645. 4. Kalitsis, P., Earle, E., Fowler, K. J., & Choo, K. H. (2000). Bub3 gene disruption in mice reveals essential mitotic spindle checkpoint function during early embryogenesis. Genes Dev, 14(18), 2277-2282. 5. Basu, J., Bousbaa, H., Logarinho, E., Li, Z., Williams, B. C., Lopes, C., Sunkel, C. E., & Goldberg, M. L. (1999). Mutations in the essential spindle checkpoint gene bub1 cs 6. Michel, L. S., Liberal, V., Chatterjee, A., Kirchwegger, R., Pasche, B., Gerald, W., Dobles, M., Sorger, P. K., Murty, V. V., & Benezra, R. (2001). MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature, 409(6818), 355-359. doi: 10.1038/35053094 7. Nicklas, R. B., & Koch, C. A. (1969). Chromosome micromanipulation. 3. Spindle fiber tension and the reorientation of mal-oriented chromosomes. J Cell Biol, 43(1), 40-50. 8. Li, X., & Nicklas, R. B. (1995). Mitotic forces control a cell-cycle checkpoint. Nature, 373(6515), 630-632. doi: 10.1038/373630a0 9. Rieder, C. L., Cole, R. W., Khodjakov, A., & Sluder, G. (1995). The checkpoint delaying anaphase in response to chromosome monoorientation is mediated by an inhibitory signal produced by unattached kinetochores. J Cell Biol, 130(4), 941-948. 10. Cleveland, D. W., Mao, Y., & Sullivan, K. F. (2003). Centromeres and kinetochores: from epigenetics to mitotic checkpoint signaling. Cell, 112(4), 407-421. 11. Rieder, C. L., Schultz, A., Cole, R., & Sluder, G. (1994). Anaphase onset in vertebrate somatic cells is controlled by a checkpoint that monitors sister kinetochore attachment to the spindle. J Cell Biol, 127(5), 1301-1310. 12. Stern, B. M., & Murray, A. W. (2001). Lack of tension at kinetochores activates the spindle checkpoint in budding yeast. Curr Biol, 11(18), 1462-1467. 13. Chen, R. H., Waters, J. C., Salmon, E. D., & Murray, A. W. (1996). Association of spindle assembly checkpoint component XMAD2 with unattached kinetochores. Science, 274(5285), 242-246. 14. Li, Y., & Benezra, R. (1996). Identification of a human mitotic checkpoint gene: hsMAD2. Science, 274(5285), 246-248. 15. Taylor, S. S., & McKeon, F. (1997). Kinetochore localization of murine Bub1 is required for normal mitotic timing and checkpoint response to spindle damage. Cell, 89(5), 727-735. 16. Martinez-Exposito, M. J., Kaplan, K. B., Copeland, J., & Sorger, P. K. (1999). Retention of the BUB3 checkpoint protein on lagging chromosomes. Proc Natl Acad Sci U S A, 96(15), 8493-8498. 17. Chen, R. H., Shevchenko, A., Mann, M., & Murray, A. W. (1998). Spindle checkpoint protein Xmad1 recruits Xmad2 to unattached kinetochores. J Cell Biol, 143(2), 283-295. 18. Taylor, S. S., Ha, E., & McKeon, F. (1998). The human homologue of Bub3 is required for kinetochore localization of Bub1 and a Mad3/Bub1-related protein kinase. J Cell Biol, 142(1), 1-11. 19. Waters, J. C., Chen, R. H., Murray, A. W., & Salmon, E. D. (1998). Localization of Mad2 to kinetochores depends on microtubule attachment, not tension. J Cell Biol, 141(5), 1181-1191. 20. He, J., Chao, W. C. H., Zhang, Z. G., Yang, J., Cronin, N., & Barford, D. (2013). Insights into Degron Recognition by APC/C Coactivators from the Structure of an Acm1-Cdh1 Complex. Molecular Cell, 50(5), 649-660. doi: 10.1016/j.molcel.2013.04.024 21. Primorac, I., & Musacchio, A. (2013). Panta rhei: The APC/C at steady state. Journal of Cell Biology, 201(2), 177-189. doi: 10.1083/jcb.201301130 22. Chang, L. F., & Barford, D. (2014). Insights into the anaphase-promoting complex: a molecular machine that regulates mitosis. Current Opinion in Structural Biology, 29, 1-9. doi: 10.1016/j.sbi.2014.08.003 23. den Elzen, N., & Pines, J. (2001). Cyclin a is destroyed in prometaphase and can delay chromosome alignment and anaphase. Journal of Cell Biology, 153(1), 121-135. doi: DOI 10.1083/jcb.153.1.121 24. Hagting, A., den Elzen, N., Vodermaier, H. C., Waizenegger, I. C., Peters, J. M., & Pines, J. (2002). Human securin proteolysis is controlled by the spindle checkpoint and reveals when the APC/C switches from activation by Cdc20 to Cdh1. Journal of Cell Biology, 157(7), 1125-1137. doi: 10.1083/jcb.200111001 25. Pines, J. (2006). Mitosis: a matter of getting rid of the right protein at the right time. Trends in Cell Biology, 16(1), 55-63. doi: 10.1016/j.tcb.2005.11.006 26. Sullivan, M., & Morgan, D. O. (2007). Finishing mitosis, one step at a time. Nature Reviews Molecular Cell Biology, 8(11), 894-903. doi: 10.1038/nrm2276 27. Lu, D., Hsiao, J. Y., Davey, N. E., Van Voorhis, V. A., Foster, S. A., Tang, C., & Morgan, D. O. (2014). Multiple mechanisms determine the order of APC/C substrate degradation in mitosis. Journal of Cell Biology, 207(1), 23-39. doi: 10.1083/jcb.201402041 28. Schwab, M., Lutum, A. S., & Seufert, W. (1997). Yeast Hct1 is a regulator of Clb2 cyclin proteolysis. Cell, 90(4), 683-693. doi: Doi 10.1016/S0092-8674(00)80529-2 29. Hwang, L. H., Lau, L. F., Smith, D. L., Mistrot, C. A., Hardwick, K. G., Hwang, E. S., Amon, A., & Murray, A. W. (1998). Budding yeast Cdc20: A target of the spindle checkpoint. Science, 279(5353), 1041-1044. doi: DOI 10.1126/science.279.5353.1041 30. Kim, S. H., Lin, D. P., Matsumoto, S., Kitazono, A., & Matsumoto, T. (1998). Fission yeast Slp1: An effector of the Mad2-dependent spindle checkpoint. Science, 279(5353), 1045-1047. doi: DOI 10.1126/science.279.5353.1045 31. Chao, W. C., Kulkarni, K., Zhang, Z., Kong, E. H., & Barford, D. (2012). Structure of the mitotic checkpoint complex. Nature, 484(7393), 208-213. doi: 10.1038/nature10896 32. Kraft, C., Vodermaier, H. C., Maurer-Stroh, S., Eisenhaber, F., & Peters, J. M. (2005). The WD40 propeller domain of Cdh1 functions as a destruction box receptor for APC/C substrates. Molecular Cell, 18(5), 543-553. doi: 10.1016/j.molcel.2005.04.023 33. Foe, I. T., Foster, S. A., Cheung, S. K., DeLuca, S. Z., Morgan, D. O., & Toczyski, D. P. (2011). Ubiquitination of Cdc20 by the APC occurs through an intramolecular mechanism. Curr Biol, 21(22), 1870-1877. doi: 10.1016/j.cub.2011.09.051 34. Kimata, Y., Baxter, J. E., Fry, A. M., & Yamano, H. (2008). A role for the Fizzy/Cdc20 family of proteins in activation of the APC/C distinct from substrate recruitment. Molecular Cell, 32(4), 576-583. doi: 10.1016/j.molcel.2008.09.023 35. Passmore, L. A., McCormack, E. A., Au, S. W. N., Paul, A., Willison, K. R., Harper, J. W., & Barford, D. (2003). Doc1 mediates the activity of the anaphase-promoting complex by contributing to substrate recognition. Embo Journal, 22(4), 786-796. doi: DOI 10.1093/emboj/cdg084 36. Vodermaier, H. C., Gieffers, C., Maurer-Stroh, S., Eisenhaber, F., & Peters, J. M. (2003). TPR subunits of the anaphase-promoting complex mediate binding to the activator protein CDH1. Current Biology, 13(17), 1459-1468. doi: Doi 10.1016/S0960-9822(03)00581-5 37. Sironi, L., Mapelli, M., Knapp, S., De Antoni, A., Jeang, K. T., & Musacchio, A. (2002). Crystal structure of the tetrameric Mad1-Mad2 core complex: implications of a 'safety belt' binding mechanism for the spindle checkpoint. EMBO J, 21(10), 2496-2506. doi: 10.1093/emboj/21.10.2496 38. Luo, X., Fang, G., Coldiron, M., Lin, Y., Yu, H., Kirschner, M. W., & Wagner, G. (2000). Structure of the Mad2 spindle assembly checkpoint protein and its interaction with Cdc20. Nat Struct Biol, 7(3), 224-229. doi: 10.1038/73338 39. Zhang, Y., & Lees, E. (2001). Identification of an overlapping binding domain on Cdc20 for Mad2 and anaphase-promoting complex: model for spindle checkpoint regulation. Mol Cell Biol, 21(15), 5190-5199. doi: 10.1128/MCB.21.15.5190-5199.2001 40. Varetti, G., Guida, C., Santaguida, S., Chiroli, E., & Musacchio, A. (2011). Homeostatic Control of Mitotic Arrest. Molecular Cell, 44(5), 710-720. doi: DOI 10.1016/j.molcel.2011.11.014 41. Schuyler, S. C., Wu, Y. F., & Kuan, V. J. (2012). The Mad1-Mad2 balancing act--a damaged spindle checkpoint in chromosome instability and cancer. J Cell Sci, 125(Pt 18), 4197-4206. doi: 10.1242/jcs.107037 42. Musacchio, A., & Salmon, E. D. (2007). The spindle-assembly checkpoint in space and time. Nature Reviews Molecular Cell Biology, 8(5), 379-393. doi: Doi 10.1038/Nrm2163 43. Sudakin, V., Chan, G. K. T., & Yen, T. J. (2001). Checkpoint inhibition of the APC/C in HeLa cells is mediated by a complex of BUBR1, BUB3, CDC20, and MAD2. Journal of Cell Biology, 154(5), 925-936. doi: DOI 10.1083/jcb.200102093 44. Fang, G. W., Yu, H. T., & Kirschner, M. W. (1998). The checkpoint protein MAD2 and the mitotic regulator CDC20 form a ternary complex with the anaphase-promoting complex to control anaphase initiation. Genes & Development, 12(12), 1871-1883. doi: DOI 10.1101/gad.12.12.1871 45. Tang, Z. Y., Bharadwaj, R., Li, B., & Yu, H. T. (2001). Mad2-independent inhibition of APC(Cdc20) by the mitotic checkpoint protein BubR1. Developmental Cell, 1(2), 227-237. doi: Doi 10.1016/S1534-5807(01)00019-3 46. Fang, G. W. (2002). Checkpoint protein BubR1 acts synergistically with Mad2 to inhibit anaphase-promoting complex. Molecular Biology of the Cell, 13(3), 755-766. doi: 10.1091/mbc.01-09-0437 47. Tipton, A. R., Wang, K. X., Link, L., Bellizzi, J. J., Huang, H. M., Yen, T., & Liu, S. T. (2011). BUBR1 and Closed MAD2 (C-MAD2) Interact Directly to Assemble a Functional Mitotic Checkpoint Complex. Journal of Biological Chemistry, 286(24), 21173-21179. doi: 10.1074/jbc.M111.238543 48. De Antoni, A., Pearson, C. G., Cimini, D., Canman, J. C., Sala, V., Nezi, L., Mapelli, M., Sironi, L., Faretta, M., Salmon, E. D., & Musacchio, A. (2005). The Mad1/Mad2 complex as a template for Mad2 activation in the spindle assembly checkpoint. Curr Biol, 15(3), 214-225. doi: 10.1016/j.cub.2005.01.038 49. Lau, D. T., & Murray, A. W. (2012). Mad2 and Mad3 cooperate to arrest budding yeast in mitosis. Curr Biol, 22(3), 180-190. doi: 10.1016/j.cub.2011.12.029 50. Maldonado, M., & Kapoor, T. M. (2011). Constitutive Mad1 targeting to kinetochores uncouples checkpoint signalling from chromosome biorientation. Nat Cell Biol, 13(4), 475-482. doi: 10.1038/ncb2223 51. Hewitt, L., Tighe, A., Santaguida, S., White, A. M., Jones, C. D., Musacchio, A., Green, S., & Taylor, S. S. (2010). Sustained Mps1 activity is required in mitosis to recruit O-Mad2 to the Mad1-C-Mad2 core complex. J Cell Biol, 190(1), 25-34. doi: 10.1083/jcb.201002133 52. Vink, M., Simonetta, M., Transidico, P., Ferrari, K., Mapelli, M., De Antoni, A., Massimiliano, L., Ciliberto, A., Faretta, M., Salmon, E. D., & Musacchio, A. (2006). In vitro FRAP identifies the minimal requirements for Mad2 kinetochore dynamics. Curr Biol, 16(8), 755-766. doi: 10.1016/j.cub.2006.03.057 53. Burton, J. L., & Solomon, M. J. (2007). Mad3p, a pseudosubstrate inhibitor of APCCdc20 in the spindle assembly checkpoint. Genes Dev, 21(6), 655-667. doi: 10.1101/gad.1511107 54. Rahmani, Z., Gagou, M. E., Lefebvre, C., Emre, D., & Karess, R. E. (2009). Separating the spindle, checkpoint, and timer functions of BubR1. Journal of Cell Biology, 187(5), 597-605. doi: 10.1083/jcb.200905026 55. Sczaniecka, M., Feoktistova, A., May, K. M., Chen, J. S., Blyth, J., Gould, K. L., & Hardwick, K. G. (2008). The spindle checkpoint functions of Mad3 and Mad2 depend on a Mad3 KEN box-mediated interaction with Cdc20-anaphase-promoting complex (APC/C). Journal of Biological Chemistry, 283(34), 23039-23047. doi: 10.1074/jbc.M803594200 56. Elowe, S., Dulla, K., Uldschmid, A., Li, X. L., Dou, Z., & Nigg, E. A. (2010). Uncoupling of the spindle-checkpoint and chromosome-congression functions of BubR1. J Cell Sci, 123(1), 84-94. doi: 10.1242/jcs.056507 57. Izawa, D., & Pines, J. (2012). Mad2 and the APC/C compete for the same site on Cdc20 to ensure proper chromosome segregation. J Cell Biol, 199(1), 27-37. doi: 10.1083/jcb.201205170 58. Huang, H.-C., Shi, J., Orth, J. D., & Mitchison, T. J. (2010). Cell death when the SAC is out of commission.
|