|
References [1]J. Ferlay, H.R. Shin, F. Bray, D. Forman, C. Mathers, D.M. Parkin, Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127 (2010) 2893-2917. [2]P. Lauren, The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol Microbiol Scand 64 (1965) 31-49. [3]P. Correa, Helicobacter pylori and gastric cancer: state of the art. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 5 (1996) 477-481. [4]P. Correa, N. Sasano, G.N. Stemmermann, W. Haenszel, Pathology of gastric carcinoma in Japanese populations: comparisons between Miyagi prefecture, Japan, and Hawaii. J Natl Cancer Inst 51 (1973) 1449-1459. [5]Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 61 (1994) 1-241. [6]M.J. Blaser, An endangered species in the stomach. Sci Am 292 (2005) 38-45. [7]D.N. Taylor, M.J. Blaser, The epidemiology of Helicobacter pylori infection. Epidemiol Rev 13 (1991) 42-59. [8]R.M. Peek, Jr., J.E. Crabtree, Helicobacter infection and gastric neoplasia. The Journal of pathology 208 (2006) 233-248. [9]J.G. Kusters, A.H. van Vliet, E.J. Kuipers, Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19 (2006) 449-490. [10]E.D. Segal, J. Cha, J. Lo, S. Falkow, L.S. Tompkins, Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96 (1999) 14559-14564. [11]H. Higashi, R. Tsutsumi, S. Muto, T. Sugiyama, T. Azuma, M. Asaka, M. Hatakeyama, SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295 (2002) 683-686. [12]H. Higashi, R. Tsutsumi, A. Fujita, S. Yamazaki, M. Asaka, T. Azuma, M. Hatakeyama, Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci U S A 99 (2002) 14428-14433. [13]M. Selbach, S. Moese, C.R. Hauck, T.F. Meyer, S. Backert, Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 277 (2002) 6775-6778. [14]M. Poppe, S.M. Feller, G. Romer, S. Wessler, Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 26 (2007) 3462-3472. [15]H. Higashi, A. Nakaya, R. Tsutsumi, K. Yokoyama, Y. Fujii, S. Ishikawa, M. Higuchi, A. Takahashi, Y. Kurashima, Y. Teishikata, S. Tanaka, T. Azuma, M. Hatakeyama, Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem 279 (2004) 17205-17216. [16]I.O. Lee, J.H. Kim, Y.J. Choi, M.H. Pillinger, S.Y. Kim, M.J. Blaser, Y.C. Lee, Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem 285 (2010) 16042-16050. [17]D.M. Bronte-Tinkew, M. Terebiznik, A. Franco, M. Ang, D. Ahn, H. Mimuro, C. Sasakawa, M.J. Ropeleski, R.M. Peek, Jr., N.L. Jones, Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer research 69 (2009) 632-639. [18]A. Lamb, X.D. Yang, Y.H. Tsang, J.D. Li, H. Higashi, M. Hatakeyama, R.M. Peek, S.R. Blanke, L.F. Chen, Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep 10 (2009) 1242-1249. [19]T. Meyer-ter-Vehn, A. Covacci, M. Kist, H.L. Pahl, Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem 275 (2000) 16064-16072. [20]H. Mimuro, T. Suzuki, S. Nagai, G. Rieder, M. Suzuki, T. Nagai, Y. Fujita, K. Nagamatsu, N. Ishijima, S. Koyasu, R. Haas, C. Sasakawa, Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe 2 (2007) 250-263. [21]N. Ohnishi, H. Yuasa, S. Tanaka, H. Sawa, M. Miura, A. Matsui, H. Higashi, M. Musashi, K. Iwabuchi, M. Suzuki, G. Yamada, T. Azuma, M. Hatakeyama, Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proceedings of the National Academy of Sciences of the United States of America 105 (2008) 1003-1008. [22]C.M. Horvath, STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 25 (2000) 496-502. [23]J. Bromberg, Stat proteins and oncogenesis. J Clin Invest 109 (2002) 1139-1142. [24]V. Calo, M. Migliavacca, V. Bazan, M. Macaluso, M. Buscemi, N. Gebbia, A. Russo, STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 197 (2003) 157-168. [25]D.Y. Kim, S.T. Cha, D.H. Ahn, H.Y. Kang, C.I. Kwon, K.H. Ko, S.G. Hwang, P.W. Park, K.S. Rim, S.P. Hong, STAT3 expression in gastric cancer indicates a poor prognosis. J Gastroenterol Hepatol 24 (2009) 646-651. [26]D.P. Steensma, R.F. McClure, J.E. Karp, A. Tefferi, T.L. Lasho, H.L. Powell, G.W. DeWald, S.H. Kaufmann, JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 20 (2006) 971-978. [27]S. Rebouissou, M. Amessou, G. Couchy, K. Poussin, S. Imbeaud, C. Pilati, T. Izard, C. Balabaud, P. Bioulac-Sage, J. Zucman-Rossi, Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457 (2009) 200-204. [28]J. Reddy, N. Shivapurkar, T. Takahashi, G. Parikh, V. Stastny, C. Echebiri, K. Crumrine, S. Zochbauer-Muller, J. Drach, Y. Zheng, Z. Feng, S.H. Kroft, R.W. McKenna, A.F. Gazdar, Differential methylation of genes that regulate cytokine signaling in lymphoid and hematopoietic tumors. Oncogene 24 (2005) 732-736. [29]Y. Oshimo, K. Kuraoka, H. Nakayama, Y. Kitadai, K. Yoshida, K. Chayama, W. Yasui, Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer 112 (2004) 1003-1009. [30]G. Egger, G. Liang, A. Aparicio, P.A. Jones, Epigenetics in human disease and prospects for epigenetic therapy. Nature 429 (2004) 457-463. [31]P.A. Jones, S.B. Baylin, The epigenomics of cancer. Cell 128 (2007) 683-692. [32]L. He, G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5 (2004) 522-531. [33]P.A. Jones, S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet 3 (2002) 415-428. [34]D. Takai, P.A. Jones, Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proceedings of the National Academy of Sciences of the United States of America 99 (2002) 3740-3745. [35]N.J. Bowen, M.B. Palmer, P.A. Wade, Chromosomal regulation by MeCP2: structural and enzymatic considerations. Cell Mol Life Sci 61 (2004) 2163-2167. [36]A. Bird, DNA methylation patterns and epigenetic memory. Genes Dev 16 (2002) 6-21. [37]X. Nan, H.H. Ng, C.A. Johnson, C.D. Laherty, B.M. Turner, R.N. Eisenman, A. Bird, Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393 (1998) 386-389. [38]B. Hendrich, A. Bird, Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18 (1998) 6538-6547. [39]T. Vaissiere, C. Sawan, Z. Herceg, Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutation research 659 (2008) 40-48. [40]M. Esteller, P.G. Corn, S.B. Baylin, J.G. Herman, A gene hypermethylation profile of human cancer. Cancer Res 61 (2001) 3225-3229. [41]J.F. Costello, M.C. Fruhwald, D.J. Smiraglia, L.J. Rush, G.P. Robertson, X. Gao, F.A. Wright, J.D. Feramisco, P. Peltomaki, J.C. Lang, D.E. Schuller, L. Yu, C.D. Bloomfield, M.A. Caligiuri, A. Yates, R. Nishikawa, H. Su Huang, N.J. Petrelli, X. Zhang, M.S. O'Dorisio, W.A. Held, W.K. Cavenee, C. Plass, Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24 (2000) 132-138. [42]A. Dobrovic, D. Simpfendorfer, Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57 (1997) 3347-3350. [43]K.Y. Chan, H. Ozcelik, A.N. Cheung, H.Y. Ngan, U.S. Khoo, Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res 62 (2002) 4151-4156. [44]J.R. Graff, J.G. Herman, R.G. Lapidus, H. Chopra, R. Xu, D.F. Jarrard, W.B. Isaacs, P.M. Pitha, N.E. Davidson, S.B. Baylin, E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55 (1995) 5195-5199. [45]T. Waki, G. Tamura, T. Tsuchiya, K. Sato, S. Nishizuka, T. Motoyama, Promoter methylation status of E-cadherin, hMLH1, and p16 genes in nonneoplastic gastric epithelia. Am J Pathol 161 (2002) 399-403. [46]G. Tamura, J. Yin, S. Wang, A.S. Fleisher, T. Zou, J.M. Abraham, D. Kong, K.N. Smolinski, K.T. Wilson, S.P. James, S.G. Silverberg, S. Nishizuka, M. Terashima, T. Motoyama, S.J. Meltzer, E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. Journal of the National Cancer Institute 92 (2000) 569-573. [47]A. Agathanggelou, S. Honorio, D.P. Macartney, A. Martinez, A. Dallol, J. Rader, P. Fullwood, A. Chauhan, R. Walker, J.A. Shaw, S. Hosoe, M.I. Lerman, J.D. Minna, E.R. Maher, F. Latif, Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene 20 (2001) 1509-1518. [48]D.S. Byun, M.G. Lee, K.S. Chae, B.G. Ryu, S.G. Chi, Frequent epigenetic inactivation of RASSF1A by aberrant promoter hypermethylation in human gastric adenocarcinoma. Cancer research 61 (2001) 7034-7038. [49]G. Strathdee, M.J. MacKean, M. Illand, R. Brown, A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18 (1999) 2335-2341. [50]Q.L. Li, K. Ito, C. Sakakura, H. Fukamachi, K. Inoue, X.Z. Chi, K.Y. Lee, S. Nomura, C.W. Lee, S.B. Han, H.M. Kim, W.J. Kim, H. Yamamoto, N. Yamashita, T. Yano, T. Ikeda, S. Itohara, J. Inazawa, T. Abe, A. Hagiwara, H. Yamagishi, A. Ooe, A. Kaneda, T. Sugimura, T. Ushijima, S.C. Bae, Y. Ito, Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109 (2002) 113-124. [51]K.F. To, M.W. Chan, W.K. Leung, E.K. Ng, J. Yu, A.H. Bai, A.W. Lo, S.H. Chu, J.H. Tong, K.W. Lo, J.J. Sung, F.K. Chan, Constitutional activation of IL-6-mediated JAK/STAT pathway through hypermethylation of SOCS-1 in human gastric cancer cell line. British journal of cancer 91 (2004) 1335-1341. [52]T. Waki, G. Tamura, M. Sato, M. Terashima, S. Nishizuka, T. Motoyama, Promoter methylation status of DAP-kinase and RUNX3 genes in neoplastic and non-neoplastic gastric epithelia. Cancer Sci 94 (2003) 360-364. [53]L. Di Croce, V.A. Raker, M. Corsaro, F. Fazi, M. Fanelli, M. Faretta, F. Fuks, F. Lo Coco, T. Kouzarides, C. Nervi, S. Minucci, P.G. Pelicci, Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295 (2002) 1079-1082. [54]P. Papageorgis, A.W. Lambert, S. Ozturk, F. Gao, H. Pan, U. Manne, Y.O. Alekseyev, A. Thiagalingam, H.M. Abdolmaleky, M. Lenburg, S. Thiagalingam, Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer research 70 (2010) 968-978. [55]Q. Zhang, H.Y. Wang, M. Marzec, P.N. Raghunath, T. Nagasawa, M.A. Wasik, STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 6948-6953. [56]N. Ohkura, M. Hijikuro, A. Yamamoto, K. Miki, Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 205 (1994) 1959-1965. [57]C.V. Hedvat, S.G. Irving, The isolation and characterization of MINOR, a novel mitogen-inducible nuclear orphan receptor. Mol Endocrinol 9 (1995) 1692-1700. [58]N. Ohkura, M. Ito, T. Tsukada, K. Sasaki, K. Yamaguchi, K. Miki, Structure, mapping and expression of a human NOR-1 gene, the third member of the Nur77/NGFI-B family. Biochim Biophys Acta 1308 (1996) 205-214. [59]T.E. Wilson, T.J. Fahrner, M. Johnston, J. Milbrandt, Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252 (1991) 1296-1300. [60]E.K. Arkenbout, V. de Waard, M. van Bragt, T.A. van Achterberg, J.M. Grimbergen, B. Pichon, H. Pannekoek, C.J. de Vries, Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation 106 (2002) 1530-1535. [61]R.W. Lim, W.L. Yang, H. Yu, Signal-transduction-pathway-specific desensitization of expression of orphan nuclear receptor TIS1. Biochem J 308 ( Pt 3) (1995) 785-789. [62]A. Nakai, S. Kartha, A. Sakurai, F.G. Toback, L.J. DeGroot, A human early response gene homologous to murine nur77 and rat NGFI-B, and related to the nuclear receptor superfamily. Mol Endocrinol 4 (1990) 1438-1443. [63]A. Winoto, Genes involved in T-cell receptor-mediated apoptosis of thymocytes and T-cell hybridomas. Semin Immunol 9 (1997) 51-58. [64]R.H. Zetterstrom, L. Solomin, T. Mitsiadis, L. Olson, T. Perlmann, Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1, and Nor1. Mol Endocrinol 10 (1996) 1656-1666. [65]E. Roche, J. Buteau, I. Aniento, J.A. Reig, B. Soria, M. Prentki, Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic beta-cell line INS-1. Diabetes 48 (1999) 2007-2014. [66]G.T. Williams, L.F. Lau, Activation of the inducible orphan receptor gene nur77 by serum growth factors: dissociation of immediate-early and delayed-early responses. Mol Cell Biol 13 (1993) 6124-6136. [67]H.M. Mohan, C.M. Aherne, A.C. Rogers, A.W. Baird, D.C. Winter, E.P. Murphy, Molecular pathways: the role of NR4A orphan nuclear receptors in cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 18 (2012) 3223-3228. [68]A.J. Wilson, D. Arango, J.M. Mariadason, B.G. Heerdt, L.H. Augenlicht, TR3/Nur77 in colon cancer cell apoptosis. Cancer research 63 (2003) 5401-5407. [69]T. Inamoto, B.A. Czerniak, C.P. Dinney, A.M. Kamat, Cytoplasmic mislocalization of the orphan nuclear receptor Nurr1 is a prognostic factor in bladder cancer. Cancer 116 (2010) 340-346. [70]C.P. Camacho, F.R. Latini, G. Oler, F.C. Hojaij, R.M. Maciel, G.J. Riggins, J.M. Cerutti, Down-regulation of NR4A1 in follicular thyroid carcinomas is restored following lithium treatment. Clinical endocrinology 70 (2009) 475-483. [71]H.M. Kagan, W. Li, Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88 (2003) 660-672. [72]Z. Vadasz, O. Kessler, G. Akiri, S. Gengrinovitch, H.M. Kagan, Y. Baruch, O.B. Izhak, G. Neufeld, Abnormal deposition of collagen around hepatocytes in Wilson's disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase like protein-2. J Hepatol 43 (2005) 499-507. [73]Y.M. Kim, E.C. Kim, Y. Kim, The human lysyl oxidase-like 2 protein functions as an amine oxidase toward collagen and elastin. Mol Biol Rep 38 (2011) 145-149. [74]U.J. Lee, A.M. Gustilo-Ashby, F. Daneshgari, M. Kuang, D. Vurbic, D.L. Lin, C.A. Flask, T. Li, M.S. Damaser, Lower urogenital tract anatomical and functional phenotype in lysyl oxidase like-1 knockout mice resembles female pelvic floor dysfunction in humans. Am J Physiol Renal Physiol 295 (2008) F545-555. [75]M. Alarab, M.A. Bortolini, H. Drutz, S. Lye, O. Shynlova, LOX family enzymes expression in vaginal tissue of premenopausal women with severe pelvic organ prolapse. Int Urogynecol J 21 (2010) 1397-1404. [76]H.J. Jung, M.J. Jeon, G.W. Yim, S.K. Kim, J.R. Choi, S.W. Bai, Changes in expression of fibulin-5 and lysyl oxidase-like 1 associated with pelvic organ prolapse. Eur J Obstet Gynecol Reprod Biol 145 (2009) 117-122. [77]G. Wu, Z. Guo, X. Chang, M.S. Kim, J.K. Nagpal, J. Liu, J.M. Maki, K.I. Kivirikko, S.P. Ethier, B. Trink, D. Sidransky, LOXL1 and LOXL4 are epigenetically silenced and can inhibit ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer. Cancer research 67 (2007) 4123-4129. [78]V. Barry-Hamilton, R. Spangler, D. Marshall, S. McCauley, H.M. Rodriguez, M. Oyasu, A. Mikels, M. Vaysberg, H. Ghermazien, C. Wai, C.A. Garcia, A.C. Velayo, B. Jorgensen, D. Biermann, D. Tsai, J. Green, S. Zaffryar-Eilot, A. Holzer, S. Ogg, D. Thai, G. Neufeld, P. Van Vlasselaer, V. Smith, Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16 (2010) 1009-1017. [79]L. Peng, Y.L. Ran, H. Hu, L. Yu, Q. Liu, Z. Zhou, Y.M. Sun, L.C. Sun, J. Pan, L.X. Sun, P. Zhao, Z.H. Yang, Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway. Carcinogenesis 30 (2009) 1660-1669. [80]V. Brekhman, J. Lugassie, S. Zaffryar-Eilot, E. Sabo, O. Kessler, V. Smith, H. Golding, G. Neufeld, Receptor activity modifying protein-3 mediates the protumorigenic activity of lysyl oxidase-like protein-2. FASEB J 25 (2011) 55-65. [81]S.L. Payne, M.J. Hendrix, D.A. Kirschmann, Paradoxical roles for lysyl oxidases in cancer--a prospect. J Cell Biochem 101 (2007) 1338-1354. [82]O. Zitka, J. Kukacka, S. Krizkova, D. Huska, V. Adam, M. Masarik, R. Prusa, R. Kizek, Matrix metalloproteinases. Curr Med Chem 17 (2010) 3751-3768. [83]J. Sun, Z. Chen, T. Zhu, J. Yu, K. Ma, H. Zhang, Y. He, X. Luo, J. Zhu, Hypermethylated SFRP1, but none of other nine genes "informative" for western countries, is valuable for bladder cancer detection in Mainland China. J Cancer Res Clin Oncol 135 (2009) 1717-1727. [84]C. Holtmeier, T. Gorogh, U. Beier, J. Meyer, M. Hoffmann, S. Gottschlich, K. Heidorn, P. Ambrosch, S. Maune, Overexpression of a novel lysyl oxidase-like gene in human head and neck squamous cell carcinomas. Anticancer research 23 (2003) 2585-2591. [85]J.B. Weise, P. Rudolph, A. Heiser, M.L. Kruse, J. Hedderich, C. Cordes, M. Hoffmann, O. Brant, P. Ambrosch, K. Csiszar, T. Gorogh, LOXL4 is a selectively expressed candidate diagnostic antigen in head and neck cancer. Eur J Cancer 44 (2008) 1323-1331. [86]Y. Kim, S. Roh, J.Y. Park, D.H. Cho, J.C. Kim, Differential expression of the LOX family genes in human colorectal adenocarcinomas. Oncology reports 22 (2009) 799-804. [87]R.A. Cairns, R. Khokha, R.P. Hill, Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med 3 (2003) 659-671. [88]A.S. Cheng, M.S. Li, W. Kang, V.Y. Cheng, J.L. Chou, S.S. Lau, M.Y. Go, C.C. Lee, T.K. Ling, E.K. Ng, J. Yu, T.H. Huang, K.F. To, M.W. Chan, J.J. Sung, F.K. Chan, Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology 144 (2013) 122-133 e129. [89]M.W. Chan, E.S. Chu, K.F. To, W.K. Leung, Quantitative detection of methylated SOCS-1 , a tumor suppressor gene, by a modified protocol of quantitative real time methylation-specific PCR using SYBR green and its use in early gastric cancer detection. Biotechnology letters 26 (2004) 1289-1293. [90]K.D. Crew, A.I. Neugut, Epidemiology of gastric cancer. World J Gastroenterol 12 (2006) 354-362. [91]M. Verma, U. Manne, Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations. Critical reviews in oncology/hematology 60 (2006) 9-18. [92]Z. Herceg, P. Hainaut, Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Molecular oncology 1 (2007) 26-41. [93]S. Sebban, R. Golan-Gerstl, R. Karni, O. Vaksman, B. Davidson, R. Reich, Alternatively spliced lysyl oxidase-like 4 isoforms have a pro-metastatic role in cancer. Clin Exp Metastasis 30 (2013) 103-117. [94]N.S. Sapari, M. Loh, A. Vaithilingam, R. Soong, Clinical potential of DNA methylation in gastric cancer: a meta-analysis. PloS one 7 (2012) e36275.
|