跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.57) 您好!臺灣時間:2025/10/02 02:52
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾莉涵
研究生(外文):Li-Han Zeng
論文名稱:NR4A3及LOXL4之異常表基因沉默在胃癌之角色
論文名稱(外文):The Role of Aberrant Epigenetic Silencing of NR4A3 and LOXL4 in Gastric Cancer
指導教授:陳永恩陳永恩引用關係
指導教授(外文):Michael Wing-Yan Chan
口試委員:吳淑芬賴鴻政趙偉廷
口試委員(外文):Shu-Fen WuHung-Cheng LaiWei-Ting Chao
口試日期:2013-07-19
學位類別:碩士
校院名稱:國立中正大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2013
畢業學年度:101
語文別:英文
論文頁數:57
中文關鍵詞:胃癌表基因JAK/STAT3 訊息路徑NR4A3LOXL4幽門螺旋桿菌
外文關鍵詞:Gastric cancerEpigeneticsJAK/STAT3 signaling pathwayNR4A3LOXL4Helicobacter pylori
相關次數:
  • 被引用被引用:0
  • 點閱點閱:363
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
胃癌是目前全世界第二致死的癌症。抑癌基因的表基因默化已成為胃癌發生的一個重要的基礎機制。過去的研究顯示,在胃癌中,幽門螺旋桿菌的感染造成活化JAK/STAT3訊息傳遞。然而,對於此訊息傳遞的異常活化的機制到目前為止尚未完全明白。因此我們假設,胃癌中JAK/STAT的訊息傳遞的異常活化會導致STAT3的標的基因受到表基因的調控而沉默。在我們過去的研究中,我們已經證明,在JAK/STAT訊息傳遞沒有持續活化的MKN28細胞中,持續活化的STAT3使其下游標的基因:NR4A3和LOXL4,透過啟動子CpG島甲基化而造成表基因沉默。將NR4A3送入JAK/STAT訊息傳遞持續活化的AGS細胞中,NR4A3的表達使AGS細胞的細胞群落形成分析 (colony formation assay) 以及軟瓊脂分析 (soft agar assay) 的細胞群落減少,還有細胞增殖率變慢。且在臨床檢體方面,我們利用定量性甲基性特異性連鎖聚合酶反應分析 (quantitative methylated-specific PCR, qMSP) 後發現,NR4A3的甲基化跟胃癌腫瘤檢體的STAT3活化有正相關,且病人的甲基化程度跟病人的存活率成反比。但是,與其結果相反,腸上皮化生 (intestinal metaplasia, IM) 病人的LOXL4甲基化比胃癌與非腫瘤胃炎檢體比起來,有顯著性的升高。IM患者當中,又以有感染幽門螺旋桿菌的IM患者有較高LOXL4甲基化。將LOXL4送入AGS細胞中,LOXL4的表達使AGS細胞的細胞群落形成分析 (colony formation assay) 的細胞群落減少,還有細胞增殖率也變慢。但是令人驚訝的是,經分析後發現,LOXL4的甲基化是一個獨立的預後指標,且LOXL4甲基化較高的病人其預後較好。與NR4A3不同,將LOXL4送入AGS細胞中,LOXL4的表達使AGS細胞的軟瓊脂分析 (soft agar assay) 的細胞群落增加。結論,我們的結果發現:胃癌中,異常JAK/STAT3訊息路徑導致NR4A3和LOXL4經由表基因而默化。且NR4A3和LOXL4的甲基化程度可以預測胃癌患者的存活率,並可能成為初步診斷胃癌的生物指標。
Gastric cancer is the second leading cause of cancer worldwide. Epigenetic silencing of tumor-suppressors has emerged as an important underlying mechanism in the gastric carcinogenesis. Previous studies showed that infection of H. pylori activates JAK/STAT3 signaling pathway in gastric cancer. However, the role of this aberrant signaling remains unclear. We hypothesized that activation of JAK/STAT signaling leads to epigenetic silencing of STAT3 target genes in gastric cancer. In our previous study, we has demonstrated that a constitutively active STAT3 led to epigenetic silencing of its downstream target genes, NR4A3 and LOXL4, via promoter CpG island hypermethylation in MKN28 cells where JAK/STAT signaling is intact. Ectopic expression of NR4A3 in AGS cells where JAK/STAT signaling is constitutively activated reduced cancer cell growth in colony formation assay (P<0.001), cancer cell growth in anchorage independent soft agar assay (P<0.05) and cell proliferation rate (P<0.001). In clinical specimens, quantitative methylated-specific PCR (qMSP) demonstrated a significant correlation between the degree of NR4A3 methylation and STAT3 nuclear translocation in gastric tumor samples (P<0.05). Importantly, methylation of NR4A3 was significantly associated with patients with shorter survival (P<0.05). In contrast, intestinal metaplasia (IM) patient demonstrated a significantly higher methylation of LOXL4 than in tumor and gastritis samples (P<0.001). IM patients infected with H. pylori have higher LOXL4 methylation than that without H. pylori (P<0.001). Ectopic expression of LOXL4 in AGS cells reduced cancer cell growth in colony formation assay (P<0.05) and cell proliferation rate (P<0.01). Surprisingly, multivariate COX-regression analysis showed that LOXL4 methylation is an independent prognostic marker and is associated with better prognosis in gastric cancer patients (HR=0.467; 95%(CI)=0.248-0.877; P=0.018). In contrast to NR4A3, ectopic expression of LOXL4 in AGS cells enhance cancer cell growth in anchorage independent soft agar assay (P<0.05), but did not affect the migration ability. In conclusion, our result demonstrated that aberrant JAK/STAT3 signaling induces epigenetic silencing of NR4A3 and LOXL4 in gastric cancer. Methylation of NR4A3 and LOXL4 predicts survival in gastric cancer patients and may be a biomarker for diagnosis of gastric cancer.
Contents
中文摘要 i
Abstract ii
Contents iv
List of figures vii
List of tables viii
Introduction 1
Gastric cancer 1
Helicobacter pylori (H. pylori) 1
The JAK/STAT signaling pathway 2
Epigenetic regulation 3
DNA methylation 3
Aberrant promoter hypermethylation and cancer 4
Aberrant JAK/STAT3 signaling and epigenetics 4
Nuclear receptor subfamily 4, group A, member 3 (NR4A3) 5
Lysyl oxidase-like 4 (LOXL4) 5
Objectives of study 7
Materials and methods 8
Cell cultures 8
Patient samples 8
Transient transfection 8
Stable transfection 9
Colony formation assay 9
Soft agar assay for anchorage independent cell growth 9
Cell viability assay for drug-resistance 10
Cell Proliferation assay 10
wound-healing assay for cell migration 10
RNA expression analysis 10
RNA extraction 10
Reverse transcription (RT) 11
Quantitative Real-time PCR (qRT-PCR) 12
DNA methylation analysis 12
DNA extraction 12
Bisulfite modification of DNA 13
Real-time quantitative methylation-specific PCR (qMSP) 14
Protein quantification analysis 14
Protein extraction 14
Protein quantification 15
Western blot 15
Results 17
Overexpression of LOXL4 inhibited colony forming activity of AGS cells 17
Promoter methylation of LOXL4 in clinical samples. 17
Higher LOXL4 promoter methylation status revealed a better patient overall survival outcome; no matter patients are in which stage. 18
Overexpression of NR4A3 and LOXL4 have no effect on the chemosensitivity of cisplatin in AGS cells 18
Overexpression of NR4A3 and LOXL4 in AGS cells affected the anchorage independent cell growth in soft agar assay. 19
Cell proliferation activity of NR4A3- and LOXL4-overexpressed stable clones was significantly decreased compared to vector-only control stable clone. 19
The cell migration ability of LOXL4-overexpressed stable clones cells did not increase compared to parental AGS cells. 19
Discussion 21
The roles of NR4A3 in gastric cancer 21
The roles of LOXL4 in gastric cancer 21
Methylation of NR4A3 and LOXL4 as biomarkers for gastric cancer prognosis 22
References 35

References
[1]J. Ferlay, H.R. Shin, F. Bray, D. Forman, C. Mathers, D.M. Parkin, Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127 (2010) 2893-2917.
[2]P. Lauren, The Two Histological Main Types of Gastric Carcinoma: Diffuse and So-Called Intestinal-Type Carcinoma. An Attempt at a Histo-Clinical Classification. Acta Pathol Microbiol Scand 64 (1965) 31-49.
[3]P. Correa, Helicobacter pylori and gastric cancer: state of the art. Cancer epidemiology, biomarkers & prevention : a publication of the American Association for Cancer Research, cosponsored by the American Society of Preventive Oncology 5 (1996) 477-481.
[4]P. Correa, N. Sasano, G.N. Stemmermann, W. Haenszel, Pathology of gastric carcinoma in Japanese populations: comparisons between Miyagi prefecture, Japan, and Hawaii. J Natl Cancer Inst 51 (1973) 1449-1459.
[5]Schistosomes, liver flukes and Helicobacter pylori. IARC Working Group on the Evaluation of Carcinogenic Risks to Humans. Lyon, 7-14 June 1994. IARC Monogr Eval Carcinog Risks Hum 61 (1994) 1-241.
[6]M.J. Blaser, An endangered species in the stomach. Sci Am 292 (2005) 38-45.
[7]D.N. Taylor, M.J. Blaser, The epidemiology of Helicobacter pylori infection. Epidemiol Rev 13 (1991) 42-59.
[8]R.M. Peek, Jr., J.E. Crabtree, Helicobacter infection and gastric neoplasia. The Journal of pathology 208 (2006) 233-248.
[9]J.G. Kusters, A.H. van Vliet, E.J. Kuipers, Pathogenesis of Helicobacter pylori infection. Clin Microbiol Rev 19 (2006) 449-490.
[10]E.D. Segal, J. Cha, J. Lo, S. Falkow, L.S. Tompkins, Altered states: involvement of phosphorylated CagA in the induction of host cellular growth changes by Helicobacter pylori. Proc Natl Acad Sci U S A 96 (1999) 14559-14564.
[11]H. Higashi, R. Tsutsumi, S. Muto, T. Sugiyama, T. Azuma, M. Asaka, M. Hatakeyama, SHP-2 tyrosine phosphatase as an intracellular target of Helicobacter pylori CagA protein. Science 295 (2002) 683-686.
[12]H. Higashi, R. Tsutsumi, A. Fujita, S. Yamazaki, M. Asaka, T. Azuma, M. Hatakeyama, Biological activity of the Helicobacter pylori virulence factor CagA is determined by variation in the tyrosine phosphorylation sites. Proc Natl Acad Sci U S A 99 (2002) 14428-14433.
[13]M. Selbach, S. Moese, C.R. Hauck, T.F. Meyer, S. Backert, Src is the kinase of the Helicobacter pylori CagA protein in vitro and in vivo. J Biol Chem 277 (2002) 6775-6778.
[14]M. Poppe, S.M. Feller, G. Romer, S. Wessler, Phosphorylation of Helicobacter pylori CagA by c-Abl leads to cell motility. Oncogene 26 (2007) 3462-3472.
[15]H. Higashi, A. Nakaya, R. Tsutsumi, K. Yokoyama, Y. Fujii, S. Ishikawa, M. Higuchi, A. Takahashi, Y. Kurashima, Y. Teishikata, S. Tanaka, T. Azuma, M. Hatakeyama, Helicobacter pylori CagA induces Ras-independent morphogenetic response through SHP-2 recruitment and activation. J Biol Chem 279 (2004) 17205-17216.
[16]I.O. Lee, J.H. Kim, Y.J. Choi, M.H. Pillinger, S.Y. Kim, M.J. Blaser, Y.C. Lee, Helicobacter pylori CagA phosphorylation status determines the gp130-activated SHP2/ERK and JAK/STAT signal transduction pathways in gastric epithelial cells. J Biol Chem 285 (2010) 16042-16050.
[17]D.M. Bronte-Tinkew, M. Terebiznik, A. Franco, M. Ang, D. Ahn, H. Mimuro, C. Sasakawa, M.J. Ropeleski, R.M. Peek, Jr., N.L. Jones, Helicobacter pylori cytotoxin-associated gene A activates the signal transducer and activator of transcription 3 pathway in vitro and in vivo. Cancer research 69 (2009) 632-639.
[18]A. Lamb, X.D. Yang, Y.H. Tsang, J.D. Li, H. Higashi, M. Hatakeyama, R.M. Peek, S.R. Blanke, L.F. Chen, Helicobacter pylori CagA activates NF-kappaB by targeting TAK1 for TRAF6-mediated Lys 63 ubiquitination. EMBO Rep 10 (2009) 1242-1249.
[19]T. Meyer-ter-Vehn, A. Covacci, M. Kist, H.L. Pahl, Helicobacter pylori activates mitogen-activated protein kinase cascades and induces expression of the proto-oncogenes c-fos and c-jun. J Biol Chem 275 (2000) 16064-16072.
[20]H. Mimuro, T. Suzuki, S. Nagai, G. Rieder, M. Suzuki, T. Nagai, Y. Fujita, K. Nagamatsu, N. Ishijima, S. Koyasu, R. Haas, C. Sasakawa, Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe 2 (2007) 250-263.
[21]N. Ohnishi, H. Yuasa, S. Tanaka, H. Sawa, M. Miura, A. Matsui, H. Higashi, M. Musashi, K. Iwabuchi, M. Suzuki, G. Yamada, T. Azuma, M. Hatakeyama, Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. Proceedings of the National Academy of Sciences of the United States of America 105 (2008) 1003-1008.
[22]C.M. Horvath, STAT proteins and transcriptional responses to extracellular signals. Trends Biochem Sci 25 (2000) 496-502.
[23]J. Bromberg, Stat proteins and oncogenesis. J Clin Invest 109 (2002) 1139-1142.
[24]V. Calo, M. Migliavacca, V. Bazan, M. Macaluso, M. Buscemi, N. Gebbia, A. Russo, STAT proteins: from normal control of cellular events to tumorigenesis. J Cell Physiol 197 (2003) 157-168.
[25]D.Y. Kim, S.T. Cha, D.H. Ahn, H.Y. Kang, C.I. Kwon, K.H. Ko, S.G. Hwang, P.W. Park, K.S. Rim, S.P. Hong, STAT3 expression in gastric cancer indicates a poor prognosis. J Gastroenterol Hepatol 24 (2009) 646-651.
[26]D.P. Steensma, R.F. McClure, J.E. Karp, A. Tefferi, T.L. Lasho, H.L. Powell, G.W. DeWald, S.H. Kaufmann, JAK2 V617F is a rare finding in de novo acute myeloid leukemia, but STAT3 activation is common and remains unexplained. Leukemia 20 (2006) 971-978.
[27]S. Rebouissou, M. Amessou, G. Couchy, K. Poussin, S. Imbeaud, C. Pilati, T. Izard, C. Balabaud, P. Bioulac-Sage, J. Zucman-Rossi, Frequent in-frame somatic deletions activate gp130 in inflammatory hepatocellular tumours. Nature 457 (2009) 200-204.
[28]J. Reddy, N. Shivapurkar, T. Takahashi, G. Parikh, V. Stastny, C. Echebiri, K. Crumrine, S. Zochbauer-Muller, J. Drach, Y. Zheng, Z. Feng, S.H. Kroft, R.W. McKenna, A.F. Gazdar, Differential methylation of genes that regulate cytokine signaling in lymphoid and hematopoietic tumors. Oncogene 24 (2005) 732-736.
[29]Y. Oshimo, K. Kuraoka, H. Nakayama, Y. Kitadai, K. Yoshida, K. Chayama, W. Yasui, Epigenetic inactivation of SOCS-1 by CpG island hypermethylation in human gastric carcinoma. Int J Cancer 112 (2004) 1003-1009.
[30]G. Egger, G. Liang, A. Aparicio, P.A. Jones, Epigenetics in human disease and prospects for epigenetic therapy. Nature 429 (2004) 457-463.
[31]P.A. Jones, S.B. Baylin, The epigenomics of cancer. Cell 128 (2007) 683-692.
[32]L. He, G.J. Hannon, MicroRNAs: small RNAs with a big role in gene regulation. Nat Rev Genet 5 (2004) 522-531.
[33]P.A. Jones, S.B. Baylin, The fundamental role of epigenetic events in cancer. Nat Rev Genet 3 (2002) 415-428.
[34]D. Takai, P.A. Jones, Comprehensive analysis of CpG islands in human chromosomes 21 and 22. Proceedings of the National Academy of Sciences of the United States of America 99 (2002) 3740-3745.
[35]N.J. Bowen, M.B. Palmer, P.A. Wade, Chromosomal regulation by MeCP2: structural and enzymatic considerations. Cell Mol Life Sci 61 (2004) 2163-2167.
[36]A. Bird, DNA methylation patterns and epigenetic memory. Genes Dev 16 (2002) 6-21.
[37]X. Nan, H.H. Ng, C.A. Johnson, C.D. Laherty, B.M. Turner, R.N. Eisenman, A. Bird, Transcriptional repression by the methyl-CpG-binding protein MeCP2 involves a histone deacetylase complex. Nature 393 (1998) 386-389.
[38]B. Hendrich, A. Bird, Identification and characterization of a family of mammalian methyl-CpG binding proteins. Mol Cell Biol 18 (1998) 6538-6547.
[39]T. Vaissiere, C. Sawan, Z. Herceg, Epigenetic interplay between histone modifications and DNA methylation in gene silencing. Mutation research 659 (2008) 40-48.
[40]M. Esteller, P.G. Corn, S.B. Baylin, J.G. Herman, A gene hypermethylation profile of human cancer. Cancer Res 61 (2001) 3225-3229.
[41]J.F. Costello, M.C. Fruhwald, D.J. Smiraglia, L.J. Rush, G.P. Robertson, X. Gao, F.A. Wright, J.D. Feramisco, P. Peltomaki, J.C. Lang, D.E. Schuller, L. Yu, C.D. Bloomfield, M.A. Caligiuri, A. Yates, R. Nishikawa, H. Su Huang, N.J. Petrelli, X. Zhang, M.S. O'Dorisio, W.A. Held, W.K. Cavenee, C. Plass, Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet 24 (2000) 132-138.
[42]A. Dobrovic, D. Simpfendorfer, Methylation of the BRCA1 gene in sporadic breast cancer. Cancer Res 57 (1997) 3347-3350.
[43]K.Y. Chan, H. Ozcelik, A.N. Cheung, H.Y. Ngan, U.S. Khoo, Epigenetic factors controlling the BRCA1 and BRCA2 genes in sporadic ovarian cancer. Cancer Res 62 (2002) 4151-4156.
[44]J.R. Graff, J.G. Herman, R.G. Lapidus, H. Chopra, R. Xu, D.F. Jarrard, W.B. Isaacs, P.M. Pitha, N.E. Davidson, S.B. Baylin, E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res 55 (1995) 5195-5199.
[45]T. Waki, G. Tamura, T. Tsuchiya, K. Sato, S. Nishizuka, T. Motoyama, Promoter methylation status of E-cadherin, hMLH1, and p16 genes in nonneoplastic gastric epithelia. Am J Pathol 161 (2002) 399-403.
[46]G. Tamura, J. Yin, S. Wang, A.S. Fleisher, T. Zou, J.M. Abraham, D. Kong, K.N. Smolinski, K.T. Wilson, S.P. James, S.G. Silverberg, S. Nishizuka, M. Terashima, T. Motoyama, S.J. Meltzer, E-Cadherin gene promoter hypermethylation in primary human gastric carcinomas. Journal of the National Cancer Institute 92 (2000) 569-573.
[47]A. Agathanggelou, S. Honorio, D.P. Macartney, A. Martinez, A. Dallol, J. Rader, P. Fullwood, A. Chauhan, R. Walker, J.A. Shaw, S. Hosoe, M.I. Lerman, J.D. Minna, E.R. Maher, F. Latif, Methylation associated inactivation of RASSF1A from region 3p21.3 in lung, breast and ovarian tumours. Oncogene 20 (2001) 1509-1518.
[48]D.S. Byun, M.G. Lee, K.S. Chae, B.G. Ryu, S.G. Chi, Frequent epigenetic inactivation of RASSF1A by aberrant promoter hypermethylation in human gastric adenocarcinoma. Cancer research 61 (2001) 7034-7038.
[49]G. Strathdee, M.J. MacKean, M. Illand, R. Brown, A role for methylation of the hMLH1 promoter in loss of hMLH1 expression and drug resistance in ovarian cancer. Oncogene 18 (1999) 2335-2341.
[50]Q.L. Li, K. Ito, C. Sakakura, H. Fukamachi, K. Inoue, X.Z. Chi, K.Y. Lee, S. Nomura, C.W. Lee, S.B. Han, H.M. Kim, W.J. Kim, H. Yamamoto, N. Yamashita, T. Yano, T. Ikeda, S. Itohara, J. Inazawa, T. Abe, A. Hagiwara, H. Yamagishi, A. Ooe, A. Kaneda, T. Sugimura, T. Ushijima, S.C. Bae, Y. Ito, Causal relationship between the loss of RUNX3 expression and gastric cancer. Cell 109 (2002) 113-124.
[51]K.F. To, M.W. Chan, W.K. Leung, E.K. Ng, J. Yu, A.H. Bai, A.W. Lo, S.H. Chu, J.H. Tong, K.W. Lo, J.J. Sung, F.K. Chan, Constitutional activation of IL-6-mediated JAK/STAT pathway through hypermethylation of SOCS-1 in human gastric cancer cell line. British journal of cancer 91 (2004) 1335-1341.
[52]T. Waki, G. Tamura, M. Sato, M. Terashima, S. Nishizuka, T. Motoyama, Promoter methylation status of DAP-kinase and RUNX3 genes in neoplastic and non-neoplastic gastric epithelia. Cancer Sci 94 (2003) 360-364.
[53]L. Di Croce, V.A. Raker, M. Corsaro, F. Fazi, M. Fanelli, M. Faretta, F. Fuks, F. Lo Coco, T. Kouzarides, C. Nervi, S. Minucci, P.G. Pelicci, Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science 295 (2002) 1079-1082.
[54]P. Papageorgis, A.W. Lambert, S. Ozturk, F. Gao, H. Pan, U. Manne, Y.O. Alekseyev, A. Thiagalingam, H.M. Abdolmaleky, M. Lenburg, S. Thiagalingam, Smad signaling is required to maintain epigenetic silencing during breast cancer progression. Cancer research 70 (2010) 968-978.
[55]Q. Zhang, H.Y. Wang, M. Marzec, P.N. Raghunath, T. Nagasawa, M.A. Wasik, STAT3- and DNA methyltransferase 1-mediated epigenetic silencing of SHP-1 tyrosine phosphatase tumor suppressor gene in malignant T lymphocytes. Proceedings of the National Academy of Sciences of the United States of America 102 (2005) 6948-6953.
[56]N. Ohkura, M. Hijikuro, A. Yamamoto, K. Miki, Molecular cloning of a novel thyroid/steroid receptor superfamily gene from cultured rat neuronal cells. Biochem Biophys Res Commun 205 (1994) 1959-1965.
[57]C.V. Hedvat, S.G. Irving, The isolation and characterization of MINOR, a novel mitogen-inducible nuclear orphan receptor. Mol Endocrinol 9 (1995) 1692-1700.
[58]N. Ohkura, M. Ito, T. Tsukada, K. Sasaki, K. Yamaguchi, K. Miki, Structure, mapping and expression of a human NOR-1 gene, the third member of the Nur77/NGFI-B family. Biochim Biophys Acta 1308 (1996) 205-214.
[59]T.E. Wilson, T.J. Fahrner, M. Johnston, J. Milbrandt, Identification of the DNA binding site for NGFI-B by genetic selection in yeast. Science 252 (1991) 1296-1300.
[60]E.K. Arkenbout, V. de Waard, M. van Bragt, T.A. van Achterberg, J.M. Grimbergen, B. Pichon, H. Pannekoek, C.J. de Vries, Protective function of transcription factor TR3 orphan receptor in atherogenesis: decreased lesion formation in carotid artery ligation model in TR3 transgenic mice. Circulation 106 (2002) 1530-1535.
[61]R.W. Lim, W.L. Yang, H. Yu, Signal-transduction-pathway-specific desensitization of expression of orphan nuclear receptor TIS1. Biochem J 308 ( Pt 3) (1995) 785-789.
[62]A. Nakai, S. Kartha, A. Sakurai, F.G. Toback, L.J. DeGroot, A human early response gene homologous to murine nur77 and rat NGFI-B, and related to the nuclear receptor superfamily. Mol Endocrinol 4 (1990) 1438-1443.
[63]A. Winoto, Genes involved in T-cell receptor-mediated apoptosis of thymocytes and T-cell hybridomas. Semin Immunol 9 (1997) 51-58.
[64]R.H. Zetterstrom, L. Solomin, T. Mitsiadis, L. Olson, T. Perlmann, Retinoid X receptor heterodimerization and developmental expression distinguish the orphan nuclear receptors NGFI-B, Nurr1, and Nor1. Mol Endocrinol 10 (1996) 1656-1666.
[65]E. Roche, J. Buteau, I. Aniento, J.A. Reig, B. Soria, M. Prentki, Palmitate and oleate induce the immediate-early response genes c-fos and nur-77 in the pancreatic beta-cell line INS-1. Diabetes 48 (1999) 2007-2014.
[66]G.T. Williams, L.F. Lau, Activation of the inducible orphan receptor gene nur77 by serum growth factors: dissociation of immediate-early and delayed-early responses. Mol Cell Biol 13 (1993) 6124-6136.
[67]H.M. Mohan, C.M. Aherne, A.C. Rogers, A.W. Baird, D.C. Winter, E.P. Murphy, Molecular pathways: the role of NR4A orphan nuclear receptors in cancer. Clinical cancer research : an official journal of the American Association for Cancer Research 18 (2012) 3223-3228.
[68]A.J. Wilson, D. Arango, J.M. Mariadason, B.G. Heerdt, L.H. Augenlicht, TR3/Nur77 in colon cancer cell apoptosis. Cancer research 63 (2003) 5401-5407.
[69]T. Inamoto, B.A. Czerniak, C.P. Dinney, A.M. Kamat, Cytoplasmic mislocalization of the orphan nuclear receptor Nurr1 is a prognostic factor in bladder cancer. Cancer 116 (2010) 340-346.
[70]C.P. Camacho, F.R. Latini, G. Oler, F.C. Hojaij, R.M. Maciel, G.J. Riggins, J.M. Cerutti, Down-regulation of NR4A1 in follicular thyroid carcinomas is restored following lithium treatment. Clinical endocrinology 70 (2009) 475-483.
[71]H.M. Kagan, W. Li, Lysyl oxidase: properties, specificity, and biological roles inside and outside of the cell. J Cell Biochem 88 (2003) 660-672.
[72]Z. Vadasz, O. Kessler, G. Akiri, S. Gengrinovitch, H.M. Kagan, Y. Baruch, O.B. Izhak, G. Neufeld, Abnormal deposition of collagen around hepatocytes in Wilson's disease is associated with hepatocyte specific expression of lysyl oxidase and lysyl oxidase like protein-2. J Hepatol 43 (2005) 499-507.
[73]Y.M. Kim, E.C. Kim, Y. Kim, The human lysyl oxidase-like 2 protein functions as an amine oxidase toward collagen and elastin. Mol Biol Rep 38 (2011) 145-149.
[74]U.J. Lee, A.M. Gustilo-Ashby, F. Daneshgari, M. Kuang, D. Vurbic, D.L. Lin, C.A. Flask, T. Li, M.S. Damaser, Lower urogenital tract anatomical and functional phenotype in lysyl oxidase like-1 knockout mice resembles female pelvic floor dysfunction in humans. Am J Physiol Renal Physiol 295 (2008) F545-555.
[75]M. Alarab, M.A. Bortolini, H. Drutz, S. Lye, O. Shynlova, LOX family enzymes expression in vaginal tissue of premenopausal women with severe pelvic organ prolapse. Int Urogynecol J 21 (2010) 1397-1404.
[76]H.J. Jung, M.J. Jeon, G.W. Yim, S.K. Kim, J.R. Choi, S.W. Bai, Changes in expression of fibulin-5 and lysyl oxidase-like 1 associated with pelvic organ prolapse. Eur J Obstet Gynecol Reprod Biol 145 (2009) 117-122.
[77]G. Wu, Z. Guo, X. Chang, M.S. Kim, J.K. Nagpal, J. Liu, J.M. Maki, K.I. Kivirikko, S.P. Ethier, B. Trink, D. Sidransky, LOXL1 and LOXL4 are epigenetically silenced and can inhibit ras/extracellular signal-regulated kinase signaling pathway in human bladder cancer. Cancer research 67 (2007) 4123-4129.
[78]V. Barry-Hamilton, R. Spangler, D. Marshall, S. McCauley, H.M. Rodriguez, M. Oyasu, A. Mikels, M. Vaysberg, H. Ghermazien, C. Wai, C.A. Garcia, A.C. Velayo, B. Jorgensen, D. Biermann, D. Tsai, J. Green, S. Zaffryar-Eilot, A. Holzer, S. Ogg, D. Thai, G. Neufeld, P. Van Vlasselaer, V. Smith, Allosteric inhibition of lysyl oxidase-like-2 impedes the development of a pathologic microenvironment. Nat Med 16 (2010) 1009-1017.
[79]L. Peng, Y.L. Ran, H. Hu, L. Yu, Q. Liu, Z. Zhou, Y.M. Sun, L.C. Sun, J. Pan, L.X. Sun, P. Zhao, Z.H. Yang, Secreted LOXL2 is a novel therapeutic target that promotes gastric cancer metastasis via the Src/FAK pathway. Carcinogenesis 30 (2009) 1660-1669.
[80]V. Brekhman, J. Lugassie, S. Zaffryar-Eilot, E. Sabo, O. Kessler, V. Smith, H. Golding, G. Neufeld, Receptor activity modifying protein-3 mediates the protumorigenic activity of lysyl oxidase-like protein-2. FASEB J 25 (2011) 55-65.
[81]S.L. Payne, M.J. Hendrix, D.A. Kirschmann, Paradoxical roles for lysyl oxidases in cancer--a prospect. J Cell Biochem 101 (2007) 1338-1354.
[82]O. Zitka, J. Kukacka, S. Krizkova, D. Huska, V. Adam, M. Masarik, R. Prusa, R. Kizek, Matrix metalloproteinases. Curr Med Chem 17 (2010) 3751-3768.
[83]J. Sun, Z. Chen, T. Zhu, J. Yu, K. Ma, H. Zhang, Y. He, X. Luo, J. Zhu, Hypermethylated SFRP1, but none of other nine genes "informative" for western countries, is valuable for bladder cancer detection in Mainland China. J Cancer Res Clin Oncol 135 (2009) 1717-1727.
[84]C. Holtmeier, T. Gorogh, U. Beier, J. Meyer, M. Hoffmann, S. Gottschlich, K. Heidorn, P. Ambrosch, S. Maune, Overexpression of a novel lysyl oxidase-like gene in human head and neck squamous cell carcinomas. Anticancer research 23 (2003) 2585-2591.
[85]J.B. Weise, P. Rudolph, A. Heiser, M.L. Kruse, J. Hedderich, C. Cordes, M. Hoffmann, O. Brant, P. Ambrosch, K. Csiszar, T. Gorogh, LOXL4 is a selectively expressed candidate diagnostic antigen in head and neck cancer. Eur J Cancer 44 (2008) 1323-1331.
[86]Y. Kim, S. Roh, J.Y. Park, D.H. Cho, J.C. Kim, Differential expression of the LOX family genes in human colorectal adenocarcinomas. Oncology reports 22 (2009) 799-804.
[87]R.A. Cairns, R. Khokha, R.P. Hill, Molecular mechanisms of tumor invasion and metastasis: an integrated view. Curr Mol Med 3 (2003) 659-671.
[88]A.S. Cheng, M.S. Li, W. Kang, V.Y. Cheng, J.L. Chou, S.S. Lau, M.Y. Go, C.C. Lee, T.K. Ling, E.K. Ng, J. Yu, T.H. Huang, K.F. To, M.W. Chan, J.J. Sung, F.K. Chan, Helicobacter pylori causes epigenetic dysregulation of FOXD3 to promote gastric carcinogenesis. Gastroenterology 144 (2013) 122-133 e129.
[89]M.W. Chan, E.S. Chu, K.F. To, W.K. Leung, Quantitative detection of methylated SOCS-1 , a tumor suppressor gene, by a modified protocol of quantitative real time methylation-specific PCR using SYBR green and its use in early gastric cancer detection. Biotechnology letters 26 (2004) 1289-1293.
[90]K.D. Crew, A.I. Neugut, Epidemiology of gastric cancer. World J Gastroenterol 12 (2006) 354-362.
[91]M. Verma, U. Manne, Genetic and epigenetic biomarkers in cancer diagnosis and identifying high risk populations. Critical reviews in oncology/hematology 60 (2006) 9-18.
[92]Z. Herceg, P. Hainaut, Genetic and epigenetic alterations as biomarkers for cancer detection, diagnosis and prognosis. Molecular oncology 1 (2007) 26-41.
[93]S. Sebban, R. Golan-Gerstl, R. Karni, O. Vaksman, B. Davidson, R. Reich, Alternatively spliced lysyl oxidase-like 4 isoforms have a pro-metastatic role in cancer. Clin Exp Metastasis 30 (2013) 103-117.
[94]N.S. Sapari, M. Loh, A. Vaithilingam, R. Soong, Clinical potential of DNA methylation in gastric cancer: a meta-analysis. PloS one 7 (2012) e36275.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊