跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.81) 您好!臺灣時間:2025/10/05 00:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:呂哲佑
研究生(外文):Lu, Che-Yu
論文名稱:增進線性度之轉導式運算放大器
論文名稱(外文):Linearity-Improved Operational Transconductance Amplifiers
指導教授:洪崇智
指導教授(外文):Hung, Chung-Chih
學位類別:碩士
校院名稱:國立交通大學
系所名稱:電信工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2012
畢業學年度:101
語文別:中文
論文頁數:75
中文關鍵詞:轉導放大器
外文關鍵詞:OTA
相關次數:
  • 被引用被引用:0
  • 點閱點閱:246
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在類比濾波器電路中,相較於主動式RC濾波器、切換式電容濾波器等其他種類的類比濾波器,轉導電容式濾波器更適合被運用在高頻率上。而轉導式運算放大器則是轉導電容式濾波器中最重要的基本元件。對轉導放大器而言,線性度較差是主要的缺點,所以如何改善線性度變成一個很重要的課題。而本論提出改善轉導式運算放大器線性度的架構,可以用來製作高線性度的轉導電容式濾波器轉導。與其他研究文獻相比,也擁有較低的功率消耗。
本論文針對線性度與低耗能兩方面的架構與技術進行討論。第一種電路架構,讓輸入對電晶體操作在飽和區,利用調節疊接組態來固定它們的汲極至源極端跨電壓,並且利用在輸入並聯一組操作在弱反轉區用以補償遷移率,如此有效提高電路的線性度。除了提高線性度,電路還具有調整轉導值的功能,可以補償轉導值因製程誤差所造成的偏移。此轉導放大器以台積電0.18μm CMOS 1P6M 製程實現,使用面積為 。它的工作電壓為1.2V且功率消耗為0.704mW。而第三項諧波失真在輸入訊號頻率40MHz且振幅為0.4Vpp時的大小是-65.23 dB,並且在同樣條件下的三階交互調變為-54 dB。
第二種電路將輸入級設定在弱反轉區路。因為電晶體的弱反轉區特性,可以將電路的電流數值降低,如此達到低耗能的要求,且操作的頻率可以控制在較低的區間,所以可以應用在聲頻相關的用途。除此之外,電路一樣也具有調整轉導值的功能。此轉導放大器以台積電0.18μm CMOS 1P6M 製程實現,使用面積為 。它的工作電壓為1.5V且功率消耗為 。而第三項諧波失真在輸入訊號頻率1kHz且振幅為0.4Vpp時的大小是-47.28dB,並且在同樣條件下的三階交互調變為-38dB。

Compared with the other types of analog filters, such as active-RC or switched-capacitor filters, transconductance-C filters are usually used for high-frequency analog filters. The Operational transconductance amplifier (OTA) is the most important building block in the transconductance-C filters. Poor linearity is the drawback of the OTA. Therefore, it is an important project to improve the linearity of the OTA. In this thesis, two linearity enhancement techniques for OTA to build the transconductance-C filter are proposed. Compared with other papers, these circuits have lower power consumption as well.
This thesis is to discuss both the architecture and technique for linearity and low power consumption. The first circuit architecture has the input transistors operating in the saturation region, uses regulation cascode configuration to fix the drain-source voltage, and add a parallel pair oftransistors operating in weak inversion for compensation mobility so as to effectively improve the linearity of the circuit. In addition to linearity improvement, the circuit further comprising transconductance adjustment function for the compensation of offset caused by the process error. This transconductance amplifier was fabricated by TSMC 0.18μm CMOS 1P6M process with the area of , the operating voltage of 1.2V, and the power consumption of 0.704mW. While the third harmonic distortion with the input frequency is 40MHz and the input amplitude of 0.4Vpp is -65.23 dB, and the third order intermodulation becomes -54 dB under the same conditions.
The input stage of the second circuits set in weak inversion. Because of the weak inversion characteristics of the transistors, the total current consumption can be reduced so as to achieve low energy requirements. The circuit operation is at lower frequency, so it is possible to apply to audio related purposes. In addition, the circuit also has similar transconductance adjustment function. This transconductance amplifier was fabricated by TSMC 0.18μm CMOS 1P6M process with the area of , the working voltage of 1.5V, and the power consumption . While the third harmonic distortion with the input signal frequency is 1kHz and the amplitude of 0.4Vpp when size is -47.28dB, the third-order intermodulation becomes -38dB under the same conditions.

第一章 緒論 1
1.1 動機 1
1.2 應用 2
1.3 電路設計流程 3
1.4 論文概述 4
第二章 轉導式運算放大器 5
2.1 簡介 5
2.2 轉導式運算放大器的基本架構 6
2.2.1 全差動輸入對 6
2.2.2 源極退化差動輸入對 9
2.2.3 偽差動輸入對 11
2.2.4 操作在三極區與固定汲極-源極跨壓之偽差動輸入對 14
2.2.5 浮置閘極的轉導器 16
2.2.6 使用電壓隨耦器的源極退化差動對 17
2.2.7 並聯式差動對 19
第三章 遷移率補償技術 20
3.1 簡介 20
3.2 使用弱反轉區補償三極區的遷移率降低 21
3.3 使用弱反轉區補償飽和區的遷移率降低 24
3.4 使用三極區補償飽和區的遷移率降低 26
第四章 高線性度之轉導式運算放大器 28
4.1 簡介 28
4.2 使用調節疊接組態之低功耗與高線性的轉導式運算放大器 29
4.2.1 轉導式運算放大器架構與原理介紹 29
4.2.2 共模回授電路與共模前授電路 35
4.3 使用遷移率補償之高速度與高線性度的轉導式運算放大器 38
4.3.1 轉導式運算放大器架構與原理介紹 38
4.3.2 共模回授電路與共模前授電路 41
第五章 模擬與量測結果 42
5.1 簡介 42
5.1.1 共模排斥比 42
5.1.2 電源排斥比 42
5.1.3 總諧波失真 43
5.1.4 第三項諧波失真 43
5.1.5 三階交互調變 44
5.1.6 功率消耗 46
5.2 使用調節疊接組態之低功耗與高線性的轉導式運算放大器的效能 47
5.2.1 模擬結果 47
5.2.2 電路佈局與量測結果 50
5.2.3 效能總結與比較 55
5.3使用遷移率補償之高速度與高線性度的轉導式運算放大器的效能 58
5.3.1 模擬結果 58
5.3.2 電路佈局與量測結果 60
5.3.3 效能總結與比較 67
第六章 結論 69
6.1 結論 69
6.2 未來發展 70
參考文獻 71

[1] C. C. Hung, K. A. Halonen, M. Ismail, V. Porra and A. Hyogo, “A low-voltage, low-power CMOS fifth-Order elliptic GM-C filter for baseband mobile, wireless communication,” IEEE Trans. Circuits Syst. Video Technol., vol. 7, pp. 584-593, Aug., 1997.

[2] T. Y. Lo and C. C. Hung, “A wide tuning range Gm-C continuous-time analog filter,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 54, no. 4, pp. 713-722, Apr. 2007.

[3] M. Ismail and T. Fiez, Analog VLSI Signal and Information Processing. New York: McGraw-Hill, 1994.

[4] S. R. Zarabadi, M. Ismail, and C. C. Hung, “High performance analog VLSI computational circuits,” IEEE J. Solid-State Circuits, vol.33, no.4, pp. 644-649, Apr. 1998.

[5] J. van Engelen, R. van de Plassche, E. Stikvoort, and A. Venes, “A sixth-order continuous-time bandpass sigma–delta modulator for digital radio IF,” IEEE J. Solid-State Circuits, vol. 34, pp. 1753–1764, no.12, Dec. 1999.

[6] J. Galan, R. G. Carvajal, A. Torralba, F. Munoz, and J. Ramirez-Angulo, “A low-power low-voltage OTA-C sinusoidal oscillator with a large tuning range,” IEEE Trans. Circuits Syst. I, Reg. Papers., vol. 52, no.2, pp. 283–291, Feb. 2005.

[7] M. Ismail and T. Fiez, Analog VLSI Signal and Information Processing. New York: McGraw-Hill, 1994.

[8] Y. Tsividis, Z. Czarnul, and S. C. Fang, "MOS transconductors and integrators with high linearity," Electronics Letters, vol. 22, pp. 245-246, Feb. 1986.

[9] A. Worapi shet and C. Naphaphan, "Current-feedback source-degenerated CMOS transconductor with very high linearity," Electronics Letters, vol. 39, pp. 17-18, Jan. 2003.

[10] A. N. Mohieldin, E. Sanchez-Sinencio, and J. Silva-Martínez, "A fully balanced pseudo-differential OTA with common-mode feedforward and inherent common-mode feedback detector," IEEE J. Solid-State Circuits, vol. 38, pp. 663-668, Apr. 2003.

[11] E. Sanchez-Sinencio and J. Silva-Martínez, “CMOS transconductance amplifiers, architechtures and active filters: a tutorial”, Proc. IEE Circuit Devices Systems, vol. 147, no. 1, pp. 3-12, Feb. 2000.

[12] A. N. Mohieldin, E. Sanchez-Sinencio, and J. Silva-Martinez, "Nonlinear effects in pseudo differential OTAs with CMFB," IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, vol. 50, pp. 762-770, Oct. 2003.

[13] U. Yodprasit and C.C. Enz, “A 1.5-V 75-dB Dynamic Range Third-Order Gm-C Filter Integrated in a 0.18um Standard Digital CMOS Process”, IEEE Journal of Solid-State Circuits, 38(7): 1189-1197, July. 2003.

[14] Yaohui Kong, Shuzheng Xu, Huazhong Yang” A Highly Linear Low Voltage CMOS Triode Transconductor” 18th European Conference Circuit Theory and Design(ECCTD) , p.p. 27-30, Aug. 2007.

[15] Carvajal, R.G.; Ramirez-Angulo, J.; Lopez-Martin, A.J.; Torralba, A.; Galan, J.A.G.; Carlosena, A.; Chavero, F.M.; "The flipped voltage follower: a useful cell for low-voltage low-power circuit design," IEEE Transactions on Circuits and Systems I: Regular Papers , vol.52, no.7, pp. 1276- 1291, Jul. 2005.

[16] J.A.Gómez Galán,M.P.Carrasco,M . Pennisi,A.L.Martin,R.González Carvajal, and Jaime Ramirez-Angulo ,”Low-Voltage Tunable Pseudo-Differential Transconductor with High Linearity” ETRI journal ,vol. 31, no.5, Oct. 2009.

[17] A. Lewinski and J. Silva-Martinez, “A high-frequency transconductor using a robust nonlinearity cancellation,” IEEE Trans. Circuits Syst. II, Exp. Briefs, vol. 53, no. 9, pp. 896–900, Sep. 2006.

[18] Behzad Razavi. Design of Analog CMOS Integrated Circuits, New York: McGraw-Hill , 2000.

[19] P. E Allen and D. R Hoolberg, CMOS Analog Circuit Design, New York: Oxford. 2002.

[20] A. L. Coban and P. E. Allen, "Low-voltage CMOS transconductance cell based on parallel operation of triode and saturation transconductors," Electronics Letters, vol. 30, pp. 1124-1126, May. 1994.

[21] S. H. Yang, K. H. Kim, C. K. Cheong, and K. R. Cho, "Design of a new linear OTA with a mobility compensation technique [Bessel filter application]," in Mixed-Signal Design, 2003. Southwest Symposium on, pp. 99-103, Feb. 2003.

[22] S. H. Yang, K. H. Kim, Y. H. Kim, Y. You, and K. R. Cho, "A novel CMOS operational transconductance amplifier based on a mobility compensation technique," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 52, pp. 37-42, Jan. 2005.

[23] T. Y. Lo, and C. C. Hung, "A High Speed Pseudo-Differential OTA with Mobility Compensation Technique in 1-V Power Supply Voltage," IEEE Asian Solid-State Circuits Conference(ASSCC), pp. 163-166, Nov. 2006.

[24] T. Y. Lo, and C. C. Hung, "A 1-V 50-MHz Pseudodifferential OTA With Compensation of the Mobility Reduction," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 54, pp. 1047-1051, Dec. 2007.

[25] D. H. Kim, and K. R. Cho, "CMOS OTA compensating transconductance linearity with PMOS path," International SoC Design Conference(ISOCC), pp. I-17-I-20, Nov. 2008.

[26] K. Tanno, D. Ide, K. Nishimura, H. Tanaka, and H. Tamura, "Highly-linear CMOS OTA with compensation of mobility reduction," IEEE Asia Pacific Conference on Circuits and Systems(APCCAS), pp. 810-813, Dec. 2008.

[27] S. T. Cheng, W. H. Chang, and C. C. Hung., "-65dBHD3 CMOS tunable OTA with mobility reduction compensation," International Symposium on VLSI Design, Automation and Test (VLSI-DAT), pp. 1-4, Apr. 2011.

[28] R. Schaumann, and M. E. Van Valkenburg, Design of Analog Filter. New York: Oxford, 2000.

[29] P. Kinget, M. Steyaert, J. Van der Spiegel, “Full analog CMOS integration of very large time constants for synaptic transfer in neural networks”, Analog Int. Circuits and Signal Processing vol.2, no4, pp. 281-295, 1992.

[30] R. Fiorelli, A. Arnaud, and C. Galup-Montoro, “Series-parallel association of transistors for the reduction of random offset in nonunity gain current mirrors,” in Proc. IEEE ISCAS, 2004, vol. 1, pp. 881–884.

[31] E. Sanchez-Sinencio and J. Silva Marinez, “CMOS transconductance amplifiers, architectures and active filters: a tutorial,” Proc. IEEE Circuits Devices Syst., vol.147, no. 1.,pp. 3-12, Feb. 2000.

[32] A. Lewinski, and J. Silva-Martinez, “OTA Linearity Enhancement Technique for High Frequency Applications With IM3 Below -65dB,” IEEE Trans. on Circuits and Systems-II: Express Brief, vol. 51, no. 10, pp. 542-548, Oct. 2004.

[33] A. J. Lopez-Martin, R.-A. Jaime, C. Durbha, and R. G. Carvajal, "A CMOS transconductor with multidecade tuning using balanced current scaling in moderate inversion," IEEE J. Solid-State Circuits, Vol. 40, Issue 5, Page(s):1078 – 1083, May. 2005.

[34] C. Lujan-Martinez, R. G. Carvajal, J. Galan, A. Torralba, J. Ramirez-Angulo, and A. Lopez-Martin, "A Tunable Pseudo-Differential OTA With -78 dB THD Consuming 1.25 mW," IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 55, pp. 527-531, Jan. 2008.

[35] T. Y. Lo, and C. C. Hung, "A 40-MHz Double Differential-Pair CMOS OTA With -60dB IM3," IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 55, pp. 246-253, Feb. 2008.
[36] Edward K. F. Lee, "Low-Voltage Opamp Design and Differential Difference Amplifier Design Using Linear Transconductor with Resistor Input ," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: ANALOG AND DIGITAL SIGNAL PROCESSING, VOL. 47, NO. 8, AUGUST 2000
[37] Meghraj Kachare, Antonio J. Jaime Ramirez-Angulo and Ramon G. Carvajal, "A Compact Tunable CMOS Transconductor With High Linearity," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS , VOL. 52, NO. 2, FEBRUARY 2005
[38] Paolo Bruschi, Fabio Sebastiano, and Nicolò Nizza, "CMOS Transconductors With Nearly Constant Input Ranges Over Wide Tuning Intervals," IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—II: EXPRESS BRIEFS, VOL. 53, NO. 10, OCTOBER 2006
[39] Ramirez-Angulo, J., Gonzalez Carvajal,R. and Acosta, L. , " CMOS Transconductors With Continuous Tuning Using FGMOS Balanced Output Current Scaling ," IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 43, NO. 5, MAY 2008

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top