|
一、七種人類細胞色素P450 3A4受質抑制土震素代謝反應之研究 Bertz, R. J., and Granneman, G. R. (1997). Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 32, 210-58. Doehmer, J. (1993). V79 Chinese hamster cells genetically engineered for cytochrome P450 and their use in mutagenicity and metabolism studies. Toxicology 82, 105-18. Domanski, T. L., and Halpert, J. R. (2001). Analysis of mammalian cytochrome P450 structure and function by site-directed mutagenesis. Curr Drug Metab 2, 117-37. Domanski, T. L., Liu, J., Harlow, G. R., and Halpert, J. R. (1998). Analysis of four residues within substrate recognition site 4 of human cytochrome P450 3A4: role in steroid hydroxylase activity and alpha-naphthoflavone stimulation. Arch Biochem Biophys 350, 223-32. Ekins, S., Stresser, D. M., and Williams, J. A. (2003). In vitro and pharmacophore insights into CYP3A enzymes. Trends Pharmacol Sci 24, 161-6. Engst, W., Landsiedel, R., Hermersdorfer, H., Doehmer, J., and Glatt, H. (1999). Benzylic hydroxylation of 1-methylpyrene and 1-ethylpyrene by human and rat cytochromes P450 individually expressed in V79 Chinese hamster cells. Carcinogenesis 20, 1777-85. Fishelovitch, D., Hazan, C., Shaik, S., Wolfson, H. J., and Nussinov, R. (2007). Structural dynamics of the cooperative binding of organic molecules in the human cytochrome P450 3A4. J Am Chem Soc 129, 1602-11. Guengerich, F. P., Parikh, A., Yun, C. H., Kim, D., Nakamura, K., Notley, L. M., and Gillam, E. M. (2000). What makes P450s work? Searches for answers with known and new P450s. Drug Metab Rev 32, 267-81. He, Y. A., He, Y. Q., Szklarz, G. D., and Halpert, J. R. (1997). Identification of three key residues in substrate recognition site 5 of human cytochrome P450 3A4 by cassette and site-directed mutagenesis. Biochemistry 36, 8831-9. Huang, W., Lin, Y. S., McConn, D. J., 2nd, Calamia, J. C., Totah, R. A., Isoherranen, N., Glodowski, M., and Thummel, K. E. (2004). Evidence of significant contribution from CYP3A5 to hepatic drug metabolism. Drug Metab Dispos 32, 1434-45. Jian, W. C. (2003). Gender-and age-related changes in Territrems metabolism by cytochrome P450 3A family in rat liver microsomes. Instisute of Toxicology. National Taiwan University. Kato, R., Yamazoe, Y., and Yasumori, T. (1992). Polymorphism in stereoselective hydroxylations of mephenytoin and hexobarbital by Japanese liver samples in relation to cytochrome P-450 human-2 (IIC9). Xenobiotica 22, 1083-92. Kenworthy, K. E., Bloomer, J. C., Clarke, S. E., and Houston, J. B. (1999). CYP3A4 drug interactions: correlation of 10 in vitro probe substrates. Br J Clin Pharmacol 48, 716-27. Khan, K. K., He, Y. A., He, Y. Q., and Halpert, J. R. (2002). Site-directed mutagenesis of cytochrome P450eryF: implications for substrate oxidation, cooperativity, and topology of the active site. Chem Res Toxicol 15, 843-53. Koley, A. P., Buters, J. T., Robinson, R. C., Markowitz, A., and Friedman, F. K. (1997). Differential mechanisms of cytochrome P450 inhibition and activation by alpha-naphthoflavone. J Biol Chem 272, 3149-52. Lewis, D. F., Lake, B. G., Dickins, M., and Goldfarb, P. S. (2004). Homology modelling of CYP3A4 from the CYP2C5 crystallographic template: analysis of typical CYP3A4 substrate interactions. Xenobiotica 34, 549-69. Ling, K. H., Yang, C. K., and Peng, F. T. (1979). Territrems, tremorgenic mycotoxins of Aspergillus terreus. Appl Environ Microbiol 37, 355-7. Ling, K. H., Yang, C. K., Kuo, C. A., and Kuo, M. D. (1982). Solvent systems for improved isolation and separation of territrems A and B. Appl Environ Microbiol 44, 860-3. Ling, K. H., Liou, H. H., Yang, C. M., and Yang, C. K. (1984). Isolation, chemical structure, acute toxicity, and some physicochemical properties of territrem C from Aspergillus terreus. Appl Environ Microbiol 47, 98-100. Ling, K. H., and Peng, Y. W. (1988). Biosynthesis of Territrems by Aspergillus terreus. Appl Environ Microbiol 54, 585-587. Ling, K. H., Chiou, C. M., and Tseng, Y. L. (1991). Biotransformation of territrems by S9 fraction from rat liver. Drug Metab Dispos 19, 587-95. Ling, K. H. (1998). Territrem: neurotoxicity and biotransformation. J Toxicol Sci 23 Suppl 2, 189-90. Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., and et al. (1993). The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12, 1-51. Peng, F. C., Wu, S. W., and Wag, B. L. (2001a). Metabolism of territrem a by liver microsomes of Wistar rats: identification of the metabolites and their metabolic sequence. J Toxicol Environ Health A 64, 579-93. Peng, F. C., Wu, S. W., and Lin, J. L. (2001b). Metabolism of territrem a in liver microsomes from wistar rats: 2. Sex differences and regulation with gonadal hormones and phenobarbital. J Toxicol Environ Health A 64, 661-71. Peng, F. C., and Lin Wu, S. W. (2002). Metabolism of territrem a in liver microsomes from male wistar rats: 3. Cytochrome p-450 isoforms catalyzing tra metabolism. J Toxicol Environ Health A 65, 2163-75. Peng, F. C., Chang, C. C., Yang, C. Y., Edwards, R. J., and Doehmer, J. (2006). Territrems B and C metabolism in human liver microsomes: major role of CYP3A4 and CYP3A5. Toxicology 218, 172-85. Ping, H., Zhen-Fu, C., Shao-Qing, X., Ming, L., Jian, W., Guo-Qing, Z., Lin, Z., Lin-Fang, L., and Meng-Chao, W. (2001). An in vivo rat model for assessment of extrahepatic metabolism. J Pharmacol Toxicol Methods 45, 181-5. Rendic, S., and Di Carlo, F. J. (1997). Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29, 413-580. Schneider, A., Schmalix, W. A., Siruguri, V., de Groene, E. M., Horbach, G. J., Kleingeist, B., Lang, D., Bocker, R., Belloc, C., Beaune, P., Greim, H., and Doehmer, J. (1996). Stable expression of human cytochrome P450 3A4 in conjunction with human NADPH-cytochrome P450 oxidoreductase in V79 Chinese hamster cells. Arch Biochem Biophys 332, 295-304. Schrag, M. L., and Wienkers, L. C. (2001). Covalent alteration of the CYP3A4 active site: evidence for multiple substrate binding domains. Arch Biochem Biophys 391, 49-55. Shimada, T., and Guengerich, F. P. (1989). Evidence for cytochrome P-450NF, the nifedipine oxidase, being the principal enzyme involved in the bioactivation of aflatoxins in human liver. Proc Natl Acad Sci U S A 86, 462-5. Thummel, K. E., and Wilkinson, G. R. (1998). In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 38, 389-430. Torimoto, N., Ishii, I., Hata, M., Nakamura, H., Imada, H., Ariyoshi, N., Ohmori, S., Igarashi, T., and Kitada, M. (2003). Direct interaction between substrates and endogenous steroids in the active site may change the activity of cytochrome P450 3A4. Biochemistry 42, 15068-77. Tseng, H. Y. (2000). Study on metabolism of Territrem A by human microsomes and human cytochrome P450 3A4 expressed in V79 Chinese hamster cells. Instisute of Toxicology. National Taiwan University. Williams, P. A., Cosme, J., Sridhar, V., Johnson, E. F., and McRee, D. E. (2000). Mammalian microsomal cytochrome P450 monooxygenase: structural adaptations for membrane binding and functional diversity. Mol Cell 5, 121-31. Yun, C. H., Shimada, T., and Guengerich, F. P. (1992). Roles of human liver cytochrome P4502C and 3A enzymes in the 3-hydroxylation of benzo(a)pyrene. Cancer Res 52, 1868-74.
二、以RAF值探討細胞色素P450 3A於大鼠及人體肝臟微粒體中 土震素代謝的角色 Akutsu, T., Kobayashi, K., Sakurada, K., Ikegaya, H., Furihata, T., and Chiba, K. (2007). Identification of human cytochrome p450 isozymes involved in diphenhydramine N-demethylation. Drug Metab Dispos 35, 72-8. Alvares, A. P., and Mannering, G. J. (1970). Two-substrate kinetics of drug-metabolizing enzyme systems of hepatic microsomes. Mol Pharmacol 6, 206-12. Aoyama, A., Tamura, T. A., Mikoshiba, K. (1990). Regulation of brain-specific transcription of the mouse myelin basic protein gene: function of the NFI-binding site in the distal promoter. Biochem Biophys Res Commun 167, 648-53 Bertz, R. J., and Granneman, G. R. (1997). Use of in vitro and in vivo data to estimate the likelihood of metabolic pharmacokinetic interactions. Clin Pharmacokinet 32, 210-58. Chang, C. C. (2005). Role of human hepatic cytochrome P450s in TerritremB and C metabolism. Instisute of Toxicology. National Taiwan University. Crespi, C. L., and Penman, B. W. (1997). Use of cDNA-expressed human cytochrome P450 enzymes to study potential drug-drug interactions. Adv Pharmacol 43, 171-88. Emoto, C., Murase, S., and Iwasaki, K. (2006). Approach to the prediction of the contribution of major cytochrome P450 enzymes to drug metabolism in the early drug-discovery stage. Xenobiotica 36, 671-83. Evans, W. E., and McLeod, H. L. (2003). Pharmacogenomics--drug disposition, drug targets, and side effects. N Engl J Med 348, 538-49. Galetin, A., Brown, C., Hallifax, D., Ito, K., and Houston, J. B. (2004). Utility of recombinant enzyme kinetics in prediction of human clearance: impact of variability, CYP3A5, and CYP2C19 on CYP3A4 probe substrates. Drug Metab Dispos 32, 1411-20. Guengerich, F. P. (1991). Reactions and significance of cytochrome P-450 enzymes. J Biol Chem 266, 10019-22. Guengerich, F. P., Parikh, A., Yun, C. H., Kim, D., Nakamura, K., Notley, L. M., and Gillam, E. M. (2000). What makes P450s work? Searches for answers with known and new P450s. Drug Metab Rev 32, 267-81. Halpert, J. R. (1995). Structural basis of selective cytochrome P450 inhibition. Annu Rev Pharmacol Toxicol 35, 29-53. Jian, W. C. (2003). Gender-and age-related changes in Territrems metabolism by cytochrome P450 3A family in rat liver microsomes. Instisute of Toxicology. National Taiwan University. Kato, R., and Yamazoe, Y. (1992). Sex-specific cytochrome P450 as a cause of sex- and species-related differences in drug toxicity. Toxicol Lett 64-65 Spec No, 661-7. Klees, T. M., Sheffels, P., Thummel, K. E., Kharasch, E. D. (2005). Pharmacogenetic determinants of human liver microsomal alfentanil metabolism and the role of cytochrome P450 3A5. Anesthesiology 102, 550-6. Matthews, B. W. (2003). Transformations in structural biology: a personal view. Methods Enzymol 368, 3-11. McGinnity, D. F., Parker, A. J., Soars, M., and Riley, R. J. (2000). Automated definition of the enzymology of drug oxidation by the major human drug metabolizing cytochrome P450s. Drug Metab Dispos 28, 1327-34. Nakajima, M., Tane, K., Nakamura, S., Shimada, N., Yamazaki, H., and Yokoi, T. (2002). Evaluation of approach to predict the contribution of multiple cytochrome P450s in drug metabolism using relative activity factor: effects of the differences in expression levels of NADPH-cytochrome P450 reductase and cytochrome b(5) in the expression system and the differences in the marker activities. J Pharm Sci 91, 952-63. Namkung, M. J., Yang, H. L., Hulla, J. E., Juchau, M. R. (1988). On the substrate specificity of cytochrome P450IIIA1. Mol Pharmacol 34, 628-37. Nelson, D. R., Kamataki, T., Waxman, D. J., Guengerich, F. P., Estabrook, R. W., Feyereisen, R., Gonzalez, F. J., Coon, M. J., Gunsalus, I. C., Gotoh, O., and et al. (1993). The P450 superfamily: update on new sequences, gene mapping, accession numbers, early trivial names of enzymes, and nomenclature. DNA Cell Biol 12, 1-51. Obach, R. S. (1996). The importance of nonspecific binding in in vitro matrices, its impact on enzyme kinetic studies of drug metabolism reactions, and implications for in vitro-in vivo correlations. Drug Metab Dispos 24, 1047-9. Rendic, S., and Di Carlo, F. J. (1997). Human cytochrome P450 enzymes: a status report summarizing their reactions, substrates, inducers, and inhibitors. Drug Metab Rev 29, 413-580. Rochat, B. (2003). Evaluation of recombinant cytochromes P450 activity in metabolic pathways. Drug Metab Dispos 31, 145-6; author reply 146. Rodrigues, A. D., and Rushmore, T. H. (2002). Cytochrome P450 pharmacogenetics in drug development: in vitro studies and clinical consequences. Curr Drug Metab 3, 289-309. Springer, D., Staack, R. F., Paul, L. D., Kraemer, T., and Maurer, H. H. (2005). Identification of cytochrome P450 enzymes involved in the metabolism of 3'',4''-methylenedioxy-alpha-pyrrolidinopropiophenone (MDPPP), a designer drug, in human liver microsomes. Xenobiotica 35, 227-37. Stormer, E., von Moltke, L. L., and Greenblatt, D. J. (2000). Scaling drug biotransformation data from cDNA-expressed cytochrome P-450 to human liver: a comparison of relative activity factors and human liver abundance in studies of mirtazapine metabolism. J Pharmacol Exp Ther 295, 793-801. Szklarz, G. D. and Halpert, J. R. (1997). Use of homology modeling in conjunction with site-directed mutagenesis for analysis of structure-function relationships of mammalian cytochromes P450. Life Sci 61, 2507-20. Thummel, K. E., and Wilkinson, G. R. (1998). In vitro and in vivo drug interactions involving human CYP3A. Annu Rev Pharmacol Toxicol 38, 389-430. Venkatakrishnan, K., von Moltke, L. L., and Greenblatt, D. J. (1998). Relative quantities of catalytically active CYP 2C9 and 2C19 in human liver microsomes: application of the relative activity factor approach. J Pharm Sci 87, 845-53. Venkatakrishnan, K., von Moltke, L. L., Court, M. H., Harmatz, J. S., Crespi, C. L., and Greenblatt, D. J. (2000). Comparison between cytochrome P450 (CYP) content and relative activity approaches to scaling from cDNA-expressed CYPs to human liver microsomes: ratios of accessory proteins as sources of discrepancies between the approaches. Drug Metab Dispos 28, 1493-504. Voice, M. W., Zhang, Y., Wolf, C. R. and Burchell, B. (1999). Effects of human cytochrome b5 on CYP3A4 activity and stability in vivo. Arch Biochem Biophys 366, 116-24. Yu, A., and Haining, R. L. (2001). Comparative contribution to dextromethorphan metabolism by cytochrome P450 isoforms in vitro: can dextromethorphan be used as a dual probe for both CTP2D6 and CYP3A activities? Drug Metab Dispos 29, 1514-20.
|