跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.19) 您好!臺灣時間:2025/09/05 02:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳志安
研究生(外文):Chih-An Chen
論文名稱:非均勻流場內散熱器性能之分析
論文名稱(外文):Analysis of Performance of a Heat Sink in Non-uniform Flow Field
指導教授:郭鴻森李基禎李基禎引用關係
指導教授(外文):Hong-Sen KouJi-Jen Lee
學位類別:碩士
校院名稱:大同大學
系所名稱:機械工程學系(所)
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:150
中文關鍵詞:非均勻流場強制對流散熱模組傾斜擋板
外文關鍵詞:Slanted plateThermal moduleNon-uniform flow fieldForced convection
相關次數:
  • 被引用被引用:1
  • 點閱點閱:213
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
利用擋板不同的傾斜角度、位置、大小來改變流場分佈,使散熱模組的散熱性能提升即是本次研究之目標。針對散熱座本身之熱傳現象進行改善,限制流過鰭片末端處的流體,使鰭片底部、溫度較高處可以獲得較大之流場速度,以高溫表面與高速流體相配合來提升散熱性能,此流場速度之差異即本文研究之對象,本文將其定義為流場之非均勻性。本次研究在散熱座前方裝置一擋板,透過擋板的傾斜以影響流場而達到預求之流場分佈,進而改變散熱座之散熱性能。研究結果發現,在不同的擋板傾斜方式與角度之下,散熱性能最多可以獲得5.8%的提升,進一步透過擋板的移動,可以使散熱性能的改善量提升至8.7%;改變擋板的大小會對散熱性能產生不同的影響,改變得宜可使散熱性能提升13.6%,反之則會使散熱性能下降4.1%之多;由於擋板傾斜、移動所產生的開口,使模組之散熱性能得以提升,若將鰭片高度調整至較適合之狀況,可以提升21.4%的散熱性能。在獲得散熱性能提升的同時,必須付出的代價是額外增加的壓力損失,其與散熱性能呈現正相關的變化;在散熱能力與輸入送風功率之間如何取捨以得到符合設計者要求之條件,可透過本研究之結果來決定。
In this study, the aim is to enhance the performance of a thermal module with improving the fluid field by a plate with different slanted angles, positions and sizes. It is focused on improving thermal performance with a strong fluid field near the bottom of a heat sink by limited the fluid flow around the top of the fin. Supplying the high fluid velocity over the high temperature surface will enhance the cooling ability of the thermal module. The varied fluid velocity is an important factor for the level of the non-uniform fluid field in this study. To reach the goal, the fluid field influenced by a slanted plate in front of the heat sink. Investigated results show that the thermal performance is increased 5.8% with varied slanted angles. By adjusting the plate to appropriate position, the performance were raised 8.7%. There is a 13.6% enhancement of the thermal performance if the size of the plate is changed appropriately. The inappropriate size of the plate will decrease the thermal performance about 4.1%. Base on the right slanted type, position and size, the maximum enhancement on the performance of the thermal module is 21.4% in characteristic height of fin. The increasement of the pressure loss depends on the variation of the thermal performance. Regarding the compromise between the thermal performance and the pressure loss, designers may select what they need by the results of this study.
誌謝 i
摘要 ii
Abstract iii
目錄 v
圖目錄 viii
表目錄 xv
符號索引 xvi
第一章 緒論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究動機 8
1.4 研究目的 11
第二章 理論分析 12
2.1 物理模型 13
2.2 基本假設 14
2.3 統御方程式 15
第三章 數值方法 22
3.1 差分方程式的建立 22
3.2 流場空間的離散體系 26
3.3 網格點系統 28
3.4 數值方法的求解流程 29
3.4.1 SIMPLE法 30
3.4.2 SIMPLEST法 32
3.5 收斂條件 33
3.6 格點獨立系統 34
第四章 結果與討論 36
4.1 不同擋板傾斜方式的影響 37
4.1.1 固定中心點使擋板傾斜 37
4.1.2 固定右端點使擋板傾斜 40
4.1.3 固定左端點使擋板傾斜 42
4.2 擋板不同位置與大小的影響 43
4.2.1 將擋板朝流道上端靠近 44
4.2.2 擋板大小的影響 46
4.3 擋板開口與鰭片高度的關係 48
4.3.1 流場分佈均勻之傳統流道 48
4.3.2擋板開口為10 mm時散熱座鰭片適合之高度 49
4.3.3擋板開口為5 mm時散熱座鰭片適合之高度 52
第五章 結論與展望 55
5.1 結論 55
5.2 未來展望 56
參考文獻 58
[1]L. A. Nelson, K. S. Sekhon and J. E. Fritz, Direct Heat Pipe Cooling of Semiconductor Devices, Proc. Int. Heat Pipe Conf., 3rd., pp.373-376, 1987.
[2]Mark Aaron Chan, Christopher R. Yap, Kim Choon Ng, Modeling and testing of an advanced compact two-phase cooler for electronics cooling, International Journal of Heat and Mass Transfer 52, pp.3456–3463, 2009.
[3]S. Shuler, Thermal Management: Understanding How To Incorporate Effective Thermal Strategies Into Overall Portable Electronic Design for Better Performance, Materials and Design, Vol. 21, pp.39-44, 2000.
[4]鄭皓元,已知縱長型散熱座的鰭片數目、深度與寬度時,求鰭片的最佳厚度,大同大學機械工程研究所碩士論文,2009
[5]盧宜忠,熱電除濕器的性能改善,國立成功大學機械工程學系碩士論文,2002
[6]Andrew T. Morrison, Optimization of Heat Sink Fin Geometries for Heat Sink in Natural Convection, IEEE, InterSociety Conference on Thermal Phenomena, pp.145-148, 1992.
[7]Tae Young Kim, Sung Jin Kim, Fluid Flow and Heat Transfer Characteristics of Cross-cut Heat Sink, International Journal of Heat and Mass Transfer, pp.5358-5370, 2009.
[8]Hung-Yi Li, Shung-Ming Chao, Measurement of Plat-fin Heat Sink with Cross Flow Cooling, International Journal of Heat and Mass Transfer, pp.2945-2955, 2009.
[9]E. M. Sparrow and S. B. Vemuri, Orientation Effect on Natural Convection / Radiation Heat Transfer from Pin-fin Arrays, International Journal of Heat and Mass Transfer, Vol.29, pp359-68, 1986.
[10]M. A. Habib, A. M. Mobarak, A. M. Attya, A. Z. Aly, Enhanced Heat Transfer in Channels with Staggered Fin of Different Spacings, International Journal of Heat and Fluid Flow, Vol.14, No.2, pp. 158-190, 1993.
[11]Seok Hwan Moon, Gunn Hwang, Ho Gyeong Yun, Tae Goo Choy, Young II Kang, Improving Thermal Performance of Miniature Heat Pipe for Notebook PC Cooling, Microelectronics Reliability, Vol. 42, pp.135-150, 2002.
[12]Kwang-Soo Kim, Myong-Hee Won, Jong-Wook Kim, Byung-Joon Back, Heat Pipe Cooling Technology for Desktop Pc CPU, Applied Thermal Engineering, pp.1137-1144, 2003.
[13]H. Xie, M. Aghazadeh, W. Lui, K. Haley, Thermal Solution to Pentium Processors in TCP in Notebooks and Sub-notebooks, IEEE Transaction on Component, Packaging and Manufacturing Technology, Part A, Vol.19, pp.54-65, 1996.
[14]Dae Hee Lee, Myeong Chan Jo, Jun Sik Lee, Yoon Seok Cha, Dae Keun Lee, Measurements of Air Temperature Distribution and Optimum Cooling Condition Inside the Computer System, Journal of Mechanical Science and Technology 23, pp544-549, 2009.
[15]R. L. Linton, D. Agonafer, Thermal Model of a PC, ASEM Journal of Electronic Packaging, Vol.116, pp.134-137, 1994.
[16]陳琦樺, 台灣電子產業價值創造之研究, 中山大學企業管理學系碩士班碩士論文, 2008
[17]B. E. Launder, D. B. Spalding, Lectures in Mathematical Models of Turbulence, Academic Press, New York, 1976.
[18]S. V. Patankar, D. B. Spalding, A Calculation Procedure for Heat, Mass and Momentum Transfer in Three-Dimensional Parabolic Flower, International Journal of Heat Transfer, Vol. 15, pp. 1787-1806, 1972.
[19]S. V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Publishing Co., New York, 1980.
[20]S. V. Patankar, A Calculation Procedure for Two-Dimensional Elliptic Situations, Numerical Heat Transfer, Vol. 4, pp. 409-425, 1981.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top