跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/16 04:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:黃志偉
研究生(外文):Chih-wei Huang
論文名稱:石英柱狀微結構濕蝕刻製程之研究
論文名稱(外文):Fabrication of quartz micro-pillars using wet etching
指導教授:洪銘聰洪銘聰引用關係
指導教授(外文):Ming-Tsung Hung
學位類別:碩士
校院名稱:國立中央大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2011
畢業學年度:100
語文別:中文
論文頁數:126
中文關鍵詞:濕蝕刻石英非等向性蝕刻石英柱狀微結構高密度針狀結構
外文關鍵詞:anisotropic etching of quartzmicro-pillarsmicro-needles
相關次數:
  • 被引用被引用:2
  • 點閱點閱:436
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
由於石英材料具有壓電性質以及高的頻率穩定性等良好的特性,因此近年來石英材料於MEMS及微感測器上的應用很廣泛,例如:生醫方面,可做為液態有機物的分析檢測器;而在微感測器方面,則有石英晶體微天平,可於工業安全與環保上用以檢測氣體;而在石英元件上則有石英震盪器、表面聲波濾波器及石英音叉元件等應用。而石英的蝕刻製程,以乾蝕刻相對於濕蝕刻來說,乾蝕刻的製程成本要比濕蝕刻貴上許多,因此本論文則以濕蝕刻的方式來探討濕蝕刻之微柱狀結構及微針狀結構,而微柱狀及微針狀結構在石英表面上具有表面改質以及增加表面特性之用。
  本研究主要以濕蝕刻製程來探討石英微結構之X方向與Y方向之蝕刻率,且針對其結構外形與遮罩圖形進行分析,整理出石英蝕刻之相關方程式,用以預測開口寬度等各項參數,並探討高密度針狀結構之間的關係,與其限制。
  研究中主要以電子束蒸鍍的方式沉積鉻金屬薄膜與金金屬薄膜於石英試片上,做為蝕刻遮罩,並利用微影製程將光罩上之圖形轉移至試片上作為蝕刻圖形,之後將金薄膜與鉻薄膜蝕刻去除,於不同遮罩下以蝕刻溫度為55℃,濃度為飽和濃度之二氟化氫銨為蝕刻液進行蝕刻,利用金屬薄膜作為蝕刻遮罩及非等向性蝕刻的特性,在不同遮罩圖形及蝕刻時間下,使石英試片形成微結構,並利用SEM觀察其結構之X方向、Y方向以及石英蝕刻後基座之外形與角度,並利用SEM圖對石英蝕刻結構進行量測。
  研究結果可得,不同遮罩圖形之X方向與Y方向各結構平面的蝕刻率,且由側向蝕刻與縱向蝕刻建立蝕刻關係式,並利用所建立的蝕刻關係式,導出針對濕蝕刻製程之針狀微結構的預測方法,再利用不同遮罩寬度下之預測值與實驗值作驗證,可知預測值與實驗值雖有誤差,但大致上蝕刻率的趨勢是一致的。而整理出各平面的蝕刻率、蝕刻角度以及蝕刻關係式等資訊,更可以運用於預測蝕刻後石英元件的尺寸,對石英元件之製造及研發有相當大助益。
Abstract
Quartz has many remarkable characteristics such as piezoelectricity nature, high frequency, and thermal stability. It has been widely used as the main materials for oscillators, resonators, and surface acoustic wave filters. In recent years, quartz has been used in micro-sensors and MEMS applications, such as quartz SAW micro-sensors for biological analysis, and quartz microbalance for gas detection. To make quartz micro-sensors, it usually requires etching processes. Comparing dry and wet etching techniques of quartz, the cost of dry etching has more preferable profile control but is much more expensive than the wet etching. It is very attractive to make complex structures using wet etching. In this thesis, we develop wet etching technique to fabricate micro-pillars and micro-needles which have potential usages in increasing sensitivity of micro-sensors and surface modification.
To fabricate the structures, chromium and gold thin film is evaporated on the quartz substrate and patterned as etching masks. The sample is then etched in ammonium fluoride solution of saturated concentration at 55℃. Due to the anisotropic etching property, micro-pillars can be formed. The etched profiles are observed using SEM to establish etching rate in the X direction, Y direction, and the shape and angle of the base structure.
Using the experimental data, the etching criteria and equations can be established that provide ways for the predictions of the grows of high-density micro-pillars. The experimental etching profiles of micro-pillars consist with the prediction. This research is helpful for developing novel MEMS devices.
摘要 I
Abstract III
誌謝 IV
目錄 V
圖目錄 VIII
表目錄 XIV
第一章 緒論 1
1.1 研究背景 1
1.2 研究動機與目的 3
1.3 文獻回顧 5
1.4 論文架構 9
第二章 理論基礎 10
2.1 石英晶體結構與特性 10
2.2 石英之切割角度介紹 12
2.3 石英之蝕刻技術 13
2.3.1 石英之濕式蝕刻 15
第三章 研究方法與實驗步驟 20
3.1 研究架構 20
3.2 實驗步驟 23
3.2.1 實驗用之試片 23
3.2.2 清洗試片 24
3.2.3 蒸鍍沉積金屬薄膜 25
3.2.4 試片切割 26
3.2.5 試片第二次清洗 27
3.2.6 微影製程 27
3.2.7 金屬薄膜之蝕刻 29
3.2.8 蝕刻液之配製 29
3.2.9 石英試片之蝕刻 30
3.2.10 試片觀測與分析 30
第四章 結果與討論 31
4.1 石英蝕刻面角度定訂 31
4.1.1 蝕刻平面之訂定:X方向 (X軸向) 32
4.1.2 蝕刻平面之訂定:Y方向 (Y軸向) 34
4.2 蝕刻數據的建立 37
4.2.1 過切數據之量測 37
4.2.2 各平面蝕刻率及蝕刻深度之量測 43
4.3 蝕刻與遮罩相關設計準則 54
4.4 蝕刻高密度針狀結構之限制 62
4.4.1 影響蝕刻高密度針狀結構之因素 63
4.4.2 蝕刻高密度針狀結構之關係式與限制 64
4.4.3 實驗值與預測值之驗證 71
4.5 石英元件之蝕刻預測 84
4.6 基座蝕刻平面之建立 87
4.6.1 基座蝕刻平面量測 88
4.6.2 基座蝕刻平面與座標軸之定義 90
第五章 結論與未來工作 101
5.1 結論 101
5.2 未來工作 102
參考文獻 103
參考文獻
[1] J. C. a. P. Curie, "Development by pressure of polar electricity in hemihedral
crystals with inclined faces" Bull. Soc. Min. de France, vol. 3, pp. 903, 1880.
[2] V. E. Bottom, "Piezoelectric effect and applications in electrical
communication" in Proc. IRE,, vol. 50, pp. 929-931, 1962.
[3] S. Fujishima, "The history of ceramic filters" Ieee Transactions on
Ultrasonics Ferroelectrics and Frequency Control, vol. 47, pp. 1-7, 2000.
[4] Hiroaki Nakanishi, "Fabrication of quartz microchips with optical slit and
development of a linear imaging UV detector for microchip electrophoresis
systems" Electrophoresis, vol.22, pp. 230-234, 2001.
[5] H Becker, K Lowack, and A Manz, "Planar quartz chips with submicron
channels for two-dimensional capillary electrophoresis applications" Journal
of Micromechanics and Microengineering, vol.8, pp. 24-28, 1998.
[6]徐泰然 原著、朱銘祥 翻譯, "微機電系統與微系統設計與製造" 普林斯
頓國際有限公司, 2003.
[7] Waldemar Soluch, "SAW Synchronous Multimode Resonator with Gold
Electrodes on Quartz" Ieee Transactions on Ultrasonics Ferroelectrics and
Frequency Control, vol. 55, pp. 1391-1393, 2008.
[8] Sean Wu, Long Wu, Jia-Hua Chang, Feng-Chih Chang, " SAW modes on
ST-X quartz with an AlN layer" Materials Letters 51, pp. 331-335, 2001.
[9] H. Chang, "石英元件技術系列(1)石英元件的過去、現在與未來,台灣
區電機電子工業同業公會電子報" vol. 93, 2009.
[10]陳貴賢, "一維奈米材料之研究, "物理雙月刊,廿三卷六期, 2001.
[11] Takumi Mori, Shigenori Moriwaki, and Norikatsu Mio, "Mechanical
Q-factor Measurement of a Quartz Oscillator at Cryogenic Temperature"
Applied Physics Express 1, pp.077002-1-3, 2008.
[12] Sungkyu Lee, "Evaluation and evaporation to exact resonance frequency
(32.768 kHz) of semifinished and unsealed surface mount device (SMD)
quartz tuning fork resonators" Surface Engineering, Surface
Instrumenation and Vacuum Technology 67, pp. 267-273, 2002.
[13] Sungkyu Lee, "Design optimization of surface mount device 32.768 kHz
quartz tuning fork-type crystals using finite element method and statistical
analysis of test samples manufactured using photolithography" Surface
Engineering, Surface Instrumenationand Vacuum Technology 68, pp.
139-148, 2003.
[14] Sungkyu Lee, "Fabrication of an array of surface mount device 32.768 kHz
quartz tuning fork-type crystals photolithography and selective etching of
an array of quartz tuning fork resonators with subsequent photoresist spray
coating" Surface Engineering, Surface Instrumenationand Vacuum
Technology 65, pp. 161-168, 2002.
[15] Desmond D. Stubbs, Sang-Hun Lee, and William D. Hunt, "Vapor Phase
Detection of a Narcotic Using Surface Acoustic Wave Immunoassay
Sensors" Ieee Sensors Journal, vol. 5, pp. 335-339, 2005.
[16] C.S. Lam, Chris Y.J. Wang, and S.M.Wang "A Review of the Recent
Development of Temperature Stable Cuts of Quartz for SAW Applications"
TXC Corporation, Ping Chen City, Taoyuan Country, Taiwan, 2008.
[17] C. R. Tellier, "Orientation effects in chemical etching of quartz plates"
Journal of materials Science 18, pp. 3621-3632, 1983.
[18] V. P. C. Shih-Wei Chang, Steven T. Boles, Caroline A. Ross, Carl V.
Thompson "Densely Packed Arrays of Ultra-High-Aspect-Ratio Silicon
Nanowires Fabricated using Block-Copolymer Lithography and
Metal-Assisted Etching," Advanced Functional Materials, vol. 19, pp.
2495- 2500, 2009.
[19] Jozefien Goossens, Loїc Martinez "Laser ultrasonic analysis of normal
modes generated by a voltage pulse on an AT quartz sensor " Ultrasonics
44, pp.1179-1182, 2006.
[20] A. E. Z. P. Suda, and W. Zingg, "Anisotropy of etching rate for quartz in
ammonium bifluoride," in Proc. IEEE Int. Freq. Contr. Symp., pp.
359–363, 1979.
[21] U. L. C Hedlund , U Bucht and J Soderkvist "Two-dimensional etching
diagrams for z-cut quartz " Journal of Micromechanics and
Microengineering, vol. 2, pp. 215-217, 1992.
[22] U. L. C Hedlund , U Bucht, and J Soderkvist "Anisotropic etching of Z-cut
quartz " Journal of Micromechanics and Microengineering, vol. 3, pp.
65-73, 1993.
[23] C. H. Pelle Rangsteny, Ilia V Katardjiev, and Ylva Bäcklund, "Etch rates of
crystallorgraphic planes in Z-cut quartz—experiments and simulation, "
Journal of Micromechanics and Microengineering, vol. 8, pp. 1-6, 1998.
[24] J. S. D. a. G. Delapierre, "Quartz: a material for microdevices," Journal of
Micromechanics and Microengineering, vol. 1, pp. 187-198, 1991.
[25]翁明宗, "自聚性單分子層之石英晶體微天平氣體感測器的製備與性能
鑑定, "2006.
[26]林佳珈, "穿膜胜肽與生物細胞膜間的交互作用之探討(Ι)-膽固醇的含
量對蜂毒胜肽穿膜機制之影響," 2004.
[27]莊達人, "VLSI製造技術", 高立圖書有限公司, 2002.
[28] J. K. Vondeling, "Fluoride-based etchants for quartz " Journal of
Materials Science, vol. 18, pp. 304-314, 1983.
[29] R. W. Ward, "Update on semiconductor process techniques for
crystals," Proc. 4th Quartz Crystal Conf, pp. 276–287, 1982.
[30] P. J. Holmes, "the electrochemistry of semiconductors : Academic
Press," Journal of Molecular Structure, pp. 170-170, 1962.
[31] E. E. H. EYRING "Modern Chemical Kinetics," 1965.
[32] I. E. I. a. S. V. V, "Etching of quartz and some features of the surface
layer Sou," Phys, vol. 18, pp. 651-3, 1974.
[33]李正中, "薄膜光學與鍍膜技術" ,藝軒圖書出版社, 2006.
[34]近藤英一, "微奈米加工學", 全華圖書股份有限公司, 2008.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top