跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.88) 您好!臺灣時間:2026/02/14 21:20
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:鄭珮宜
論文名稱:斑馬魚Cdx2基因與消化道及軟骨性頭骨發育
指導教授:胡清華胡清華引用關係黃聲蘋
學位類別:碩士
校院名稱:國立海洋大學
系所名稱:生物科技研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2003
畢業學年度:91
語文別:中文
中文關鍵詞:斑馬魚消化道軟骨性頭骨
外文關鍵詞:Cdx2
相關次數:
  • 被引用被引用:3
  • 點閱點閱:334
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:1
老鼠Cdx2基因,與果蠅caudal基因為同源性的基因,為含有homeodomain為其DNA-binding motif之轉錄因子。一些研究顯示在晚期的胚胎以及成體,Cdx2的表現侷限於前端大腸處之腸道上皮,同時Cdx2主導早期腸道的細胞增生、細胞分化以及細胞生長並保持腸道分化後的型態且與許多腸道癌症的形成有關,顯示了Cdx2對哺乳類腸道發育扮演著極端重要的角色。近年來斑馬魚為一新興的模式系統用來研究脊椎動物的胚胎發育過程,同時其與哺乳類可能具有相似的分子調節機制。因此本論文即以斑馬魚為研究材料來探討斑馬魚Cdx2同源基因是否亦在斑馬魚消化道的發育上扮演重要的角色。
利用斑馬魚基因庫- λgt10 cDNA library,得到可完整轉譯出255個胺基酸的斑馬魚Cdx2 cDNA,經由比對發現轉譯出的Cdx2蛋白質與西方有爪青蛙 (Silurana tropicalis) 的cad2有最高約69 % 氨基酸序列之相似度且包含靠近N-端的蛋白質活化區以及靠近C-端的保守區homeodomain。利用全覆式原位雜合反應來觀察Cdx2 mRNA在不同胚胎時期的表現,顯示Cdx2 mRNA首先出現於一細胞期,證實其為母體表現基因,表現持續至八細胞期、囊胚期、原腸胚期、尾芽體期至分節期,而原腸胚期時期起Cdx2 mRNA的胚胎表現主要集中於下胚層,且分節期在中後腦及部分體節有表現。受精後24小時,Cdx2 mRNA開始專一的表現於斑馬魚腸道之前端部分並逐漸向後端延伸,在48 hpf時表現於整條腸道。Cdx2 mRNA於腸道的表現在96 hpf之胚胎達到最高點,且其表現隨著胚胎發育至120 hpf及144 hpf有逐漸下降的趨勢。以48 hpf、72 hpf、96 hpf之斑馬魚冷凍切片來觀察此腸道專一性的表現,顯示其Cdx2 mRNA之表現主要集中於腸道頂端絨毛及基部細胞核等區域。
將反意寡核酸利用顯微注射入胚胎抑制Cdx2蛋白質的產生,在48 hpf時,注射過Cdx2專一性反意寡核酸的胚胎體成彎曲狀,且在120 hpf時可明顯發現軟骨性頭骨發育之不正常。進一步以全覆式原位雜合反應來觀察在注射過Cdx2專一性反意寡核酸的胚胎中各不同消化道標記基因表現的變異情形。如利用咽喉標記基因Shh及食道標記基因Dlx7來觀察兩者在咽喉與食道表現之變異情形,顯示了Cdx2基因功能之抑制會造成咽喉Shh mRNA之表現量及表現區有明顯的減少及不正常的現象且會造成Dlx7 mRNA在食道的表現量幾近於完全消失且使表現區有模糊不清且左右異位的現象;利用腸道標記基因Cdx2、IFABP及Gata6來觀察其在腸道表現的變異情形,顯示了Cdx2基因功能被抑制後會造成這些腸道標記基因的表現量大幅減少並使表現區域有不正常縮小且左右異位的現象;利用肝臟標記基因LFABP、HNF-4α、Gata6及Hhex來觀察其在肝臟表現的變異情形,顯示了Cdx2基因功能之抑制亦造成這些肝臟標記基因的表現量幾近消失並使表現區域沒有呈現正常新月型且左右異位的情形,而對另一個肝臟標記基因HNF-1α而言,HNF-1α mRNA在注射過胚胎中肝臟之表現沒有明顯的減少現象,但有左右異位的情形。利用外分泌性胰臟標記基因Trypsin及Gata6來觀察其在外分泌性胰臟表現的變異情形,同樣顯示了Cdx2基因功能的抑制會造成外分泌性胰臟標記基因的表現量減少並使表現侷限於一小區域及左右異位的情形;但利用內分泌性胰臟標記基因Insulin及Hhex來觀察其在內分泌性胰臟的表現,卻顯示了Cdx2基因功能的減少只造成內分泌胰臟的表現區域分散於兩處且有異位的情形產生但對其表現量是沒有影響。綜合上述,顯示Cdx2基因調控上述咽喉、食道、肝臟、外分泌性胰臟及腸道標記基因的表現並在這些消化器官發育左右不對稱性扮演著極端重要的角色。
為了了解Cdx2基因是否亦會調控其他左右不對稱發育的器官如:心臟的左右不對稱性分佈,進一步探討了表現於側板 (lateral plate) 中胚層左側之Lefty2基因以及表現於心臟的生長因子BMP4在被注射入Cdx2專一性反意寡核酸之胚胎中其在心臟表現的變異情形。所得結果亦顯示了Cdx2基因功能之抑制會造成心臟左右有異位的情形,綜上所知,Cdx2對斑馬魚器官左右不對稱之發育,扮演著上游調節性的重要角色。
Cdx2 基因亦為軟骨性頭骨正常發育所必需。以不同軟骨發育之標記基因來檢視注射過Cdx2專一性反意寡核酸的胚胎其軟骨性頭骨發育的過程。如利用檢視顱神經脊細胞遷移之標記基因Dlx2及Hoxa2來檢視顱神經脊細胞是否有正確的遷移情形,顯示Cdx2 基因功能的減少造成已遷移至菱腦原節鄰近與第二對及第三對咽弧軟骨之顱神經脊細胞中Dlx2及Hoxa2 mRNA的表現完全消失,證實了顱神經脊細胞沒有正確遷移的現象。利用Dlx7此標記基因來檢視顱神經脊細胞遷移至咽弧的過程,顯示Cdx2 基因功能之抑制對Dlx7 mRNA在咽弧的表現量並沒有影響,但其對第三至第七對咽弧表現區域之影響則顯示Cdx2 基因功能之喪失造成咽弧有融合在一起的現象;利用Chm1來檢視顱神經脊細胞遷移後分化成軟骨細胞之情形,結果亦顯示Chm1 mRNA在咽弧軟骨之表現量是不受影響的,證實了咽弧軟骨細胞之發育並沒有受到影響,但表現區域仍顯示Cdx2 基因功能之喪失造成咽弧有紊亂不正常的現象。另利用檢視軟骨細胞分化及提供軟骨發育所需膠原蛋白之標記基因Sox9a及Col2a1來檢視軟骨細胞是否有正常分化及型態形成的過程,顯示了Cdx2基因功能被抑制後其Sox9a及Col2a1 mRNA的表現量是正常的,證實了軟骨發育過程中軟骨細胞之分化現象及膠原蛋白的提供最後發育成為不同軟骨的過程是不受Cdx2基因功能喪失而有影響的,但其在軟骨性頭骨的表現區則顯示了Cdx2 基因功能之喪失造成咽弧軟骨不規則融合在一起且原來位於上方的髓顱軟骨和位於下方咽弧軟骨並沒有明顯的上下區隔而有髓顱軟骨與咽弧軟骨在下方重疊的現象。
綜合上述,顯示Cdx2 基因為髓顱及咽弧軟骨正常發育所必需,因為Cdx2 基因被抑制後會影響軟骨正常型態形成發育之過程並導致注射過的胚胎有咽弧軟骨不規則融合在一起且原來位於上方的髓顱軟骨和位於下方咽弧軟骨並沒有明顯的上下區隔而有髓顱軟骨與咽弧軟骨在下方重疊的現象。故Cdx2 基因之功能主要與顱神經脊細胞的遷移及遷移後於咽弧區域的定位有關,但對於顱神經脊遷移後咽弧軟骨細胞之形成、軟骨細胞的分化及軟骨基質的形成作用是沒有影響的。
目錄
 目錄………………………………………………..Ⅰ
 實驗方法目錄……………………………………..Ⅱ
 圖目錄……………………………………………..Ⅳ
 中文摘要…………………………………………...1
 英文摘要…………………………………………...4
 導論………………………………………………...8
 實驗方法…………………………………………..21
 結果………………………………………………..36
 討論………………………………………………..49
 參考文獻…………………………………………..54
 圖表………………………………………………..59
 附錄………………………………………………..88
參考文獻
Andre, M., Ando, S., Ballagny, C., Durliat, M., Poupard, G., Briancon, C. and Babin, P. J. (2000). Intestinal fatty acid binding protein gene expression reveals the cephalocaudal patterning during zebrafish gut morphogenesis. Int J Dev Biol 44, 249-252.
Beck, F., Erler, T., Russell, A. and James, R. (1995). Expression of Cdx-2 in the mouse embryo and placenta: possible role in patterning of the extra-embryonic membranes. Dev Dyn 204, 219-227.
Biemar, F., Argenton, F., Schmidtke, R., Epperlein, S., Peers, B. and Driever, W. (2001). Pancreas development in zebrafish: early dispersed appearance of endocrine hormone expressing cells and their convergence to form the definitive islet. Dev Biol 230, 189-203.
Bisgrove, B. W., Essner, J. J. and Yost, H. J. (1999). Regulation of midline development by antagonism of lefty and nodal signaling. Development 126, 3253-3262.
Bisgrove, B. W., Essner, J. J. and Yost, H. J. (2000). Multiple pathways in the midline regulate concordant brain, heart and gut left-right asymmetry. Development 127, 3567-3579.
Bisgrove, B. W., Morelli, S. H. and Yost, H. J. (2003). Genetics of Human Laterality Disorders: Insights from Vertebrate Model Systems. Annu Rev Genomics Hum Genet.
Chawengsaksophak, K., James, R., Hammond, V. E., Kontgen, F. and Beck, F. (1997). Homeosis and intestinal tumours in Cdx2 mutant mice. Nature 386, 84-87.
Chen, J. N., van Eeden, F. J., Warren, K. S., Chin, A., Nusslein-Volhard, C., Haffter, P. and Fishman, M. C. (1997). Left-right pattern of cardiac BMP4 may drive asymmetry of the heart in zebrafish. Development 124, 4373-4382.
Chiang, E. F., Pai, C. I., Wyatt, M., Yan, Y. L., Postlethwait, J. and Chung, B. (2001). Two sox9 genes on duplicated zebrafish chromosomes: expression of similar transcription activators in distinct sites. Dev Biol 231, 149-163.
da Costa, L. T., He, T. C., Yu, J., Sparks, A. B., Morin, P. J., Polyak, K., Laken, S., Vogelstein, B. and Kinzler, K. W. (1999). CDX2 is mutated in a colorectal cancer with normal APC/beta-catenin signaling. Oncogene 18, 5010-5014.
Denovan-Wright, E. M., Pierce, M., Sharma, M. K. and Wright, J. M. (2000). cDNA sequence and tissue-specific expression of a basic liver-type fatty acid binding protein in adult zebrafish (Danio rerio). Biochim Biophys Acta 1492, 227-232.
Drummond, F., Putt, W., Fox, M. and Edwards, Y. H. (1997). Cloning and chromosome assignment of the human CDX2 gene. Ann Hum Genet 61 ( Pt 5), 393-400.
Drummond, F., Sowden, J., Morrison, K. and Edwards, Y. H. (1996). The caudal-type homeobox protein Cdx-2 binds to the colon promoter of the carbonic anhydrase 1 gene. Eur J Biochem 236, 670-681.
Duprey, P., Chowdhury, K., Dressler, G. R., Balling, R., Simon, D., Guenet, J. L. and Gruss, P. (1988). A mouse gene homologous to the Drosophila gene caudal is expressed in epithelial cells from the embryonic intestine. Genes Dev 2, 1647-1654.
Ellies, D. L., Stock, D. W., Hatch, G., Giroux, G., Weiss, K. M. and Ekker, M. (1997). Relationship between the genomic organization and the overlapping embryonic expression patterns of the zebrafish dlx genes. Genomics 45, 580-590.
Essner, J. J., Branford, W. W., Zhang, J. and Yost, H. J. (2000). Mesendoderm and left-right brain, heart and gut development are differentially regulated by pitx2 isoforms. Development 127, 1081-1093.
Freund, J. N., Domon-Dell, C., Kedinger, M. and Duluc, I. (1998). The Cdx-1 and Cdx-2 homeobox genes in the intestine. Biochem Cell Biol 76, 957-969.
Gamer, L. W. and Wright, C. V. (1993). Murine Cdx-4 bears striking similarities to the Drosophila caudal gene in its homeodomain sequence and early expression pattern. Mech Dev 43, 71-81.
Gehring, W. J. (1987). Homeo boxes in the study of development. Science 236, 1245-1252.
Gehring, W. J., Affolter, M. and Burglin, T. (1994a). Homeodomain proteins. Annu Rev Biochem 63, 487-526.
Gehring, W. J., Qian, Y. Q., Billeter, M., Furukubo-Tokunaga, K., Schier, A. F., Resendez-Perez, D., Affolter, M., Otting, G. and Wuthrich, K. (1994b). Homeodomain-DNA recognition. Cell 78, 211-223.
Gordon, J. I. and Hermiston, M. L. (1994). Differentiation and self-renewal in the mouse gastrointestinal epithelium. Curr Opin Cell Biol 6, 795-803.
He, T. C., da Costa, L. T. and Thiagalingam, S. (1997). Homeosis and polyposis: a tale from the mouse. Bioessays 19, 551-555.
Her, G. M., Chiang, C. C., Chen, W. Y. and Wu, J. L. (2003). In vivo studies of liver-type fatty acid binding protein (L-FABP) gene expression in liver of transgenic zebrafish (Danio rerio). FEBS Lett 538, 125-133.
Hinoi, T., Lucas, P. C., Kuick, R., Hanash, S., Cho, K. R. and Fearon, E. R. (2002). CDX2 regulates liver intestine-cadherin expression in normal and malignant colon epithelium and intestinal metaplasia. Gastroenterology 123, 1565-1577.
Hinoi, T., Tani, M., Lucas, P. C., Caca, K., Dunn, R. L., Macri, E., Loda, M., Appelman, H. D., Cho, K. R. and Fearon, E. R. (2001). Loss of CDX2 expression and microsatellite instability are prominent features of large cell minimally differentiated carcinomas of the colon. Am J Pathol 159, 2239-2248.
James, R., Erler, T. and Kazenwadel, J. (1994). Structure of the murine homeobox gene cdx-2. Expression in embryonic and adult intestinal epithelium. J Biol Chem 269, 15229-15237.
James, R. and Kazenwadel, J. (1991). Homeobox gene expression in the intestinal epithelium of adult mice. J Biol Chem 266, 3246-3251.
Kaufman, T. C., Seeger, M. A. and Olsen, G. (1990). Molecular and genetic organization of the antennapedia gene complex of Drosophila melanogaster. Adv Genet 27, 309-362.
Kimmel, C. B., Miller, C. T. and Moens, C. B. (2001). Specification and morphogenesis of the zebrafish larval head skeleton. Dev Biol 233, 239-257.
Kontges, G. and Lumsden, A. (1996). Rhombencephalic neural crest segmentation is preserved throughout craniofacial ontogeny. Development 122, 3229-3242.
Kosaki, K. and Casey, B. (1998). Genetics of human left-right axis malformations. Semin Cell Dev Biol 9, 89-99.
Levine, M. and Hoey, T. (1988). Homeobox proteins as sequence-specific transcription factors. Cell 55, 537-540.
Lorentz, O., Duluc, I., Arcangelis, A. D., Simon-Assmann, P., Kedinger, M. and Freund, J. N. (1997). Key role of the Cdx2 homeobox gene in extracellular matrix-mediated intestinal cell differentiation. J Cell Biol 139, 1553-1565.
Macdonald, P. M. and Struhl, G. (1986). A molecular gradient in early Drosophila embryos and its role in specifying the body pattern. Nature 324, 537-545.
Mallo, G. V., Soubeyran, P., Lissitzky, J. C., Andre, F., Farnarier, C., Marvaldi, J., Dagorn, J. C. and Iovanna, J. L. (1998). Expression of the Cdx1 and Cdx2 homeotic genes leads to reduced malignancy in colon cancer-derived cells. J Biol Chem 273, 14030-14036.
Mann, R. S. and Hogness, D. S. (1990). Functional dissection of Ultrabithorax proteins in D. melanogaster. Cell 60, 597-610.
McGinnis, W. and Kuziora, M. (1994). The molecular architects of body design. Sci Am 270, 58-61, 64-66.
Meyer, B. I. and Gruss, P. (1993). Mouse Cdx-1 expression during gastrulation. Development 117, 191-203.
Mlodzik, M. and Gehring, W. J. (1987). Expression of the caudal gene in the germ line of Drosophila: formation of an RNA and protein gradient during early embryogenesis. Cell 48, 465-478.
Mutoh, H., Hakamata, Y., Sato, K., Eda, A., Yanaka, I., Honda, S., Osawa, H., Kaneko, Y. and Sugano, K. (2002). Conversion of gastric mucosa to intestinal metaplasia in Cdx2-expressing transgenic mice. Biochem Biophys Res Commun 294, 470-479.
Ober, E. A., Field, H. A. and Stainier, D. Y. (2003). From endoderm formation to liver and pancreas development in zebrafish. Mech Dev 120, 5-18.
Otting, G., Qian, Y. Q., Billeter, M., Muller, M., Affolter, M., Gehring, W. J. and Wuthrich, K. (1990). Protein--DNA contacts in the structure of a homeodomain--DNA complex determined by nuclear magnetic resonance spectroscopy in solution. Embo J 9, 3085-3092.
Pack, M., Solnica-Krezel, L., Malicki, J., Neuhauss, S. C., Schier, A. F., Stemple, D. L., Driever, W. and Fishman, M. C. (1996). Mutations affecting development of zebrafish digestive organs. Development 123, 321-328.
Percival-Smith, A., Muller, M., Affolter, M. and Gehring, W. J. (1990). The interaction with DNA of wild-type and mutant fushi tarazu homeodomains. Embo J 9, 3967-3974.
Piotrowski, T. and Nusslein-Volhard, C. (2000). The endoderm plays an important role in patterning the segmented pharyngeal region in zebrafish (Danio rerio). Dev Biol 225, 339-356.
Piotrowski, T., Schilling, T. F., Brand, M., Jiang, Y. J., Heisenberg, C. P., Beuchle, D., Grandel, H., van Eeden, F. J., Furutani-Seiki, M., Granato, M. et al. (1996). Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. Development 123, 345-356.
Prince, V. E., Moens, C. B., Kimmel, C. B. and Ho, R. K. (1998). Zebrafish hox genes: expression in the hindbrain region of wild-type and mutants of the segmentation gene, valentino. Development 125, 393-406.
Rebagliati, M. R., Toyama, R., Fricke, C., Haffter, P. and Dawid, I. B. (1998). Zebrafish nodal-related genes are implicated in axial patterning and establishing left-right asymmetry. Dev Biol 199, 261-272.
Sachdev, S. W., Dietz, U. H., Oshima, Y., Lang, M. R., Knapik, E. W., Hiraki, Y. and Shukunami, C. (2001). Sequence analysis of zebrafish chondromodulin-1 and expression profile in the notochord and chondrogenic regions during cartilage morphogenesis. Mech Dev 105, 157-162.
Seno, H., Oshima, M., Taniguchi, M. A., Usami, K., Ishikawa, T. O., Chiba, T. and Taketo, M. M. (2002). CDX2 expression in the stomach with intestinal metaplasia and intestinal-type cancer: Prognostic implications. Int J Oncol 21, 769-774.
Silberg, D. G., Sullivan, J., Kang, E., Swain, G. P., Moffett, J., Sund, N. J., Sackett, S. D. and Kaestner, K. H. (2002). Cdx2 ectopic expression induces gastric intestinal metaplasia in transgenic mice. Gastroenterology 122, 689-696.
Silberg, D. G., Swain, G. P., Suh, E. R. and Traber, P. G. (2000). Cdx1 and cdx2 expression during intestinal development. Gastroenterology 119, 961-971.
Subramanian, V., Meyer, B. and Evans, G. S. (1998). The murine Cdx1 gene product localises to the proliferative compartment in the developing and regenerating intestinal epithelium. Differentiation 64, 11-18.
Suh, E., Chen, L., Taylor, J. and Traber, P. G. (1994). A homeodomain protein related to caudal regulates intestine-specific gene transcription. Mol Cell Biol 14, 7340-7351.
Suh, E. and Traber, P. G. (1996). An intestine-specific homeobox gene regulates proliferation and differentiation. Mol Cell Biol 16, 619-625.
Taylor, J. K., Boll, W., Levy, T., Suh, E., Siang, S., Mantei, N. and Traber, P. G. (1997). Comparison of intestinal phospholipase A/lysophospholipase and sucrase-isomaltase genes suggest a common structure for enterocyte-specific promoters. DNA Cell Biol 16, 1419-1428.
Traber, P. G. and Silberg, D. G. (1996). Intestine-specific gene transcription. Annu Rev Physiol 58, 275-297.
Trainor, P. A. and Krumlauf, R. (2001). Hox genes, neural crest cells and branchial arch patterning. Curr Opin Cell Biol 13, 698-705.
Wallace, K. N. and Pack, M. (2003). Unique and conserved aspects of gut development in zebrafish. Dev Biol 255, 12-29.
Wallace, K. N., Yusuff, S., Sonntag, J. M., Chin, A. J. and Pack, M. (2001). Zebrafish hhex regulates liver development and digestive organ chirality. Genesis 30, 141-143.
Yan, Y. L., Miller, C. T., Nissen, R. M., Singer, A., Liu, D., Kirn, A., Draper, B., Willoughby, J., Morcos, P. A., Amsterdam, A. et al. (2002). A zebrafish sox9 gene required for cartilage morphogenesis. Development 129, 5065-5079.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 張清濱(1992)。中途輟學的社會學分析及其輔導策略。教育研究雙月刊, 25, 48-56。
2. 張景媛(1996)。國中輟學生心理的轉變與輔導。測驗與輔導, 138, 2840-2842。
3. 陳富美(2001)。從老師、家長及學生的差異觀點探討阻礙學生中途輟學防治之因素。社區發展季刊, (96), 222-235。
4. 張人傑(1994)。改進輟學研究需解決的問題。教育研究雙月刊, 37, 28-35。
5. 陳儀如(1998)。政府與學校如何有效辦理中輟生的輔導。教育資料文摘, (245), 183-187。
6. 黃韻如(1999)。巡迴迷途的羔羊-從社會工作觀點談中輟生問題。訓育研究, 38 (2), 2-15。
7. 黃德祥、向天屏(1999)。中輟學生形成原因與對策之研究。訓育研究, 38 (2), 16-33。
8. 鄧煌發(2000)。輟學少年之家庭與社會學習因素的比較分析。犯罪學期刊, 5, 233-276。
9. 鄭崇趁(1999)。中途學校與中輟生輔導。訓育研究, 38 (2), 48-56。
10. 劉佩雲(1995)。國民中小學學生中輟生成因及輔導策略之探討。教育研究資訊, 2 (2), 85-93。
11. 劉秀汶(1999)。國民中學中輟生問題及支援系統之研究。訓育研究, 38 (2), 63-80。
12. 彭懷真(1995)。輔導工作網絡的建立與策略-以關懷受虐兒童和中輟學生為例。輔導季刊, 31(2), 14-16。
13. 曾華源、郭靜晃(1999)。邁向二十一世紀少年福利的願景-平衡保護性和發展性的少年社會福利。社區發展季刊, 88, 132-226。
14. 翁慧圓(1996)。從家庭系統理論探討國中少年中途輟學行為。社區發展季刊, 73, 63-64。
15. 段秀玲(1988)。中途輟學國中生與一般國中生在生活適應及親子關係差異之比較研究。輔導月刊, 24, 31-34。