跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.176) 您好!臺灣時間:2025/09/06 05:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖佳愉
研究生(外文):Chia-Yu Liao
論文名稱:微酸性電解水對台灣鯛與食品接觸表面上食品病原菌之清除效果
論文名稱(外文):Effect of slightly acidic electrolyzed water on disinfecting food pathogens on tilapia fish and food contact surface
指導教授:蔡永祥博士李憶甄博士
口試委員:蔡永祥博士李憶甄博士林仲聖博士龔賢鳳博士
口試日期:2018-06-27
學位類別:碩士
校院名稱:國立高雄海洋科技大學
系所名稱:水產食品科學研究所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:84
中文關鍵詞:微酸性電解水台灣鯛食品接觸表面食品病原菌
外文關鍵詞:slightly acidic electrolyzed watertilapia fishfood contact surfacefood pathogens
相關次數:
  • 被引用被引用:1
  • 點閱點閱:739
  • 評分評分:
  • 下載下載:35
  • 收藏至我的研究室書目清單書目收藏:0
微酸性電解水 (Slightly acidic electrolyzed water, SAEW)為殺菌劑,是以水和稀鹽酸經電解生成 (pH值為5.0-6.5的次氯酸),在美國、日本和韓國已被認為是合法的食品添加劑,低氯濃度的微酸性電解水具有很強的抗菌活性,對人體健康和環境無不良影響。本研究首先以不同有效氯濃度 (Available chlorine concentration, ACC)之微酸性電解水 (6.25、12.5、25、50與100 ppm)和反應時間(1、3與5分鐘)處理V. parahaemolyticus、S. Typhimurium及L. monocytogenes,進行殺菌效果評估。結果顯示,殺菌效果隨著SAEW之濃度與處理時間越久,殘存菌量會減少,其中,L. monocytogenes對SAEW之耐受性最高,其次 S. Typhimurium,以V. parahaemolyticus對SAEW最敏感。
再者,本研究將台灣鯛之魚肉、魚皮分別接種前述三株病原菌 ,再以SAEW (50、100 ppm ACC)或次氯酸鈉 (100 ppm ACC)或蒸餾水處理2與5分鐘後,檢測其殘存菌數。另外,於台灣鯛魚皮分別接種前述三株病原菌,再以SAEW冰 (50、100 ppm ACC)或蒸餾水冰包覆24小時期間,定期(6、12及24小時)檢測其殘存菌數。首先,以100 ppm ACC 之SAEW中浸洗鯛魚肉5分鐘後,分別可減少V. parahaemolyticus、S. Typhimurium及L. monocytogenes菌數約0.98、0.80及0.66 log CFU/g。其次,以100 ppm ACC 之SAEW中浸洗鯛魚皮5分鐘後,分別減少S. Typhimurium及L. monocytogenes菌數1.94及2.25 log CFU/25 cm2;而V. parahaemolyticus以50和100 ppm ACC之SAEW浸洗5分鐘後,皆可完全清除附著菌數。另外,使用100 ppm ACC 之SAEW冰包覆魚皮24小時,分別可減少V. parahaemolyticus、S. Typhimurium及L. monocytogenes菌數3.28、1.22及0.70 log CFU/25 cm2。整體而言,SAEW對清除魚皮上病原菌之效果優於鯛魚肉,並發現對V. parahaemolyticus之清除效果較佳,其次為 S. Typhimurium,以 L. monocytogenes 最差。而50 ppm的微酸性電解水相當等於100 ppm次氯酸鈉溶液的除菌效果。
另外,於食品接觸表面 (不鏽鋼板、磁磚、塑膠砧板及木質砧板)分別接種前述三株食品病原菌後,以不同濃度之SAEW (3.125、6.25、12.5、25、50、100 ppm)或次氯酸鈉(200 ppm)或蒸餾水浸洗1分鐘後,檢測其殘存菌數。結果得知,SAEW清除食品接觸表面上病原菌之效果會隨著濃度增加而增加,對S. Typhimurium與V. parahaemolyticus 以及L. monocytogenes 於塑膠砧板、不銹鋼板及磁磚清除效果較佳,分別在 6.25以及12.5 ppm ACC即可完全清除,但在木質砧板之效果較差,當以最高濃度100 ppm ACC處理後仍無法完全清除。綜合上述,微酸性電解水可以做為清除台灣鯛及食品接觸表面上汙染食品病原菌的消毒劑。

In slightly acidic electrolyzed water (SAEW), the effective form of chloride compounds is almost the hypochlorous acid (HClO) at a pH of 5.0-6.5, which has strong antimicrobial activity and cause not adverse effect to human health and environment. This study was conducted to determine the efficacy of SAEW on inactivating three food pathogens (Salmonella Typhimurium, Vibrio parahaemolyticus and Listeria monocytogenes). In addition, this research was to determine the disinfection efficacy of SAEW for inoculating food pathogens on the tilapia meat and skin, and food contact surfaces. The results showed that the bactericidal effects of SAEW for three food pathogens increased with available chloride concentration (ACC) and treatment time increased. Meanwhile, L. monocytogenes was the most resistant to SAEW, followed by S. Typhimurium, and V. parahaemolyticus. Soaking tilapia meat in SAEW (100 ppm of ACC) for 5 min resulted in 0.98, 0.80 and 0.66 log CFU/g reductions of V. parahaemolyticus, S. Typhimurium and L. monocytogenes, respectively. A treatment of SAEW (100 ppm of ACC) for 5 min was capable of reducing S. Typhimurium, and L. monocytogenes on tilapia skin by 1.94 and 2.25 log CFU/25 cm2, respectively, while V. parahaemolyticus could be disinfected to <2.0 log CFU/25 cm2 by SAEW with 50 or 100 ppm of ACC for 5 min. A treatment of SAEW ice (100 ppm ACC) for 24 h was capable of reducing V. parahaemolyticus, S. Typhimurium and L. monocytogenes on tilapia skin by 3.28, 1.22 and 0.70 log CFU/cm2, respectively. Except for wood cutting board, the S. Typhimurium, V. parahaemolyticus and L. monocytogenes were not detected on the food contact surfaces (plastic board, stainless steel and ceramic tile) within 1 min after soaking to SAEW containing 6.25 ppm and 12.5 ppm of ACC, respectively. Among them, the minimal disinfection concentrations (MDC) of SAEW against S. Typhimurium, V. parahaemolyticus and L. monocytogenes on plastic cutting boards, stainless steel and ceramic tile were 6.25 ppm to 12.5 ppm at 1 minute immersion, whereas that of wooden cutting board way >100 ppm. In conclusion, SAEW could be used as a sanitizer to eliminate food pathogens contamination on fish skin and food contact surfaces.
中文摘要 1
Abstract 3
誌謝 5
目錄 7
圖目錄 11
壹、研究動機 12
貳、文獻回顧 15
一、 電解水 15
二、 微酸性電解水 17
三、 台灣鯛 20
四、食品病原菌 22
(一) 腸炎弧菌 (Vibrio parahaemolyticus) 22
(二) 鼠傷寒沙門氏菌 (Salmonella Typhimurium) 24
(三) 李斯特菌 (Listeria monocytogenes) 26
五、食品中毒及其預防 28
參、材料與方法 40
肆、結果與討論 45
(一) 微酸性電解水對食品病原菌之殺菌作用 45
(二) 微酸性電解水對於台灣鯛中食品病原菌之除菌 47
(三) 微酸性電解水冰對食品病原菌於鯛魚皮之除菌作用 51
(四) 微酸性電解水對砧板及食品接觸表面之除菌作用 52
伍、結論 72
陸、參考文獻 73

アオ-タ-研究彙編 (1997),強酸性電解水の基礎知識,オ-ム社,千代田區神田錦町3-1,東京。。
丹保憲二、小笠原紘一。 (1985)。¬「淨水の技術」,技報堂出版,日本。
文長安 (1999) 從食品中毒談餐飲衛生(下),中國飲食文化基金會會訊5(1):32-37。
日本OMCO社提案書。 (1996) 電解酸化水關聯資料集。
王仁澤、王健行、王利伶 (1997) 食品之危害分析與重要管制點,高立出版社,台北。
王西華、王進琦 (1998) 基礎微生物。藝軒出版社,台北。
王憶鎧 (2000) 截切蔬菜之清洗。食品工業,32(1):51-21。
王憶鎧、黃錦城 (2003) 不同消毒劑連續式消毒對沙拉用生菜細菌之殺菌效果。中國農業化學雜誌41(6):212-220。
陳雅琴 (2006) 美國食品安全的制度體系與法令規定,農政與農情,164:77-82。
行政院農委會漁業署 (2010) 漁業統計年報,行政院農委會漁業署。
行政院農委會漁業署 (2017) 漁業統計年報,行政院農委會漁業署。
行政院環保署 (2009) 飲用水水質標準,行政院環保署。
吳彩平 (2007) 次氯酸鈉。食品工業,39(3):41-43。
吳智源 (2015) 基隆市民眾對吳郭魚產品的認知與接受度及消費行為之研究。國立臺灣海洋大學環境生物與漁業科學學系,碩士論文,基隆。
松尾昌樹。1999。電解水の基礎と利用技術,技報堂出版。
施養志、賴昭伶、陳昭蓉、王貞懿 (1996)。市售大陸魚貝類中腸炎弧菌之分離。藥物食品分析,4 : 239-246。
張平平 (1986) 。腸炎弧菌。食品工業,18 : 21-29。
張造夫、廖明輝 (1985a) 牡蠣及蛤之沙門氏桿菌汙染調查。中國水產,393:5-10。.
張造夫、廖明輝 (1985b) 蝦之沙門氏桿菌汙染調查。台灣省畜牧獸醫學會會報,393:5-10。
許秉洋 (2012)二氧化氯對組織胺生產菌之殺菌作用與在旗魚肉保鮮之應用。國立高雄海洋科技大學水產食品科學系碩士論文,高雄。
郭書豪 (2012) 利用二維電泳結串聯式質譜儀研究酸性、微酸性電解水對腸炎弧菌之殺菌機制。國立臺灣海洋大學食品科學系碩士論文,基隆。
郭鴻均 (1985) 醋酸與鹽水浸漬液對冷凍蝦仁沙門氏桿菌汙染之抑菌。國立台灣海洋學院水產食品科系碩士論文,基隆。
陳岍汝 (2011) 牡蠣殼粉溶液對食品及食品接觸面上食品病原菌及組織胺生產菌之清除效果。國立高雄海洋科技大學水產食品科學系碩士論文,高雄。
陳幸臣 (2007) 食品微生物學 。華格納出版社,台中。
陳建元等 (2011) 食品衛生與安全。華格那出版社,台中。
黃婉君 (2005) 鹼劑前處理對吳郭魚皮製備明膠之品質提昇的影響。國立高雄海洋科技大學水產食品科學系,碩士論文,高雄。
黃博斌 (2016) 吳郭魚加工共產物中蛋白質鑑定及其潛在活性胜肽之分析,國立臺灣海洋大學食品科學系,碩士論文,基隆。
黃登福等 (2015) 食品衛生與安全。華格那出版社,台中。
黃錦城 (2015) 酸化殺菌水用於水產品之清洗殺菌技術,OSG Open Scene Graph,Japan。
黃錦城、鄭大青、楊瑩蓉、鍾遠懷、紀璟叡 (1998)。電解產生強酸性水用於蔬菜清洗殺菌之評估。中國農業化學會誌 36(5):473-482。
楊明全 (2000) 難道只有含氯製劑是食品用清潔劑與消毒劑。低溫食品,46(7):2-8。
葉全益 (2001) 食品衛生與安全。華香園出版社,台北。
廖哲逸 (1995) 沙門氏菌症:起因及其於食品中之控制。食品工業,27(3):22-31。
種田耕藏 (2000) 電解水的機能及在食品工業上的應用。日本食品工業。45(2):26-28。
劉明哲 (2004) 二氧化氯生物除汙滅菌效能研究。核生化防護半年刊。77:78-93。
劉智明 (2005) 電刺激殺菌配合低濃度化學浸泡處理對商用土雞屠體品質及屠體表面沙門氏桿菌或金黃色葡萄球菌之影響。國立中興大學畜產學系,碩士論文,台中。
劉瑞 (2010) 電生功能水在芽苗菜生產中的應用研究。中國農業大學食品科學與營養工程學院,碩士論文,北京。
蔡芳儒 (2001) 醃蜆加工品有關衛生細菌品質之安全與改進。國立台灣海洋大學食品科學系,碩士論文,基隆。
衛生福利部食品藥物管理署 (1991-2009) 台灣地區中毒發生狀況分類表。民國80-98年台灣地區中毒發生與防治年報,台北。
衛生福利部食品藥物管理署 (1996-2010) 台灣地區中毒原因分類表。民國85-99年台灣地區中毒發生與防治年報,台北。
衛生福利部食品藥物管理署 (2010) 各類食品中毒原因介紹。民國99年台灣地區中毒發生與防治年報,台北。
衛生福利部食品藥物管理署 (2011) 食品中毒定義。民國100年台灣地區中毒發生與防治年報,台北。
衛生福利部食品藥物管理署 (2017) 歷年食品中毒資料。民國106年台灣地區中毒發生與防治年報,台北。
鄭清和 (2005) 餐飲衛生安全實務。復文書局。台南。
鄭聰旭 (1991) 危害分析重要管制點在餐飲業衛生作業上之應用。食品工業,23(5):8-15。
謝志宏 (2006) 種禽即孵化蛋之沙門氏桿菌的疫情與抗藥性分析。國立嘉義大學獸醫學系,碩士論文,嘉義。
鍾遠懷 (1993) 常見食品消毒劑殺菌功能。食品工業,25(6):24-32。
簡吟真 (2002) 酸性電解水與次氯酸鈉溶液清洗對生鮮吳郭魚品質改善之評估,國立屏東科技大學食品科學系,碩士論文,屏東。
羅瑩珊 (2015) 微鹼性電解水對李斯特菌與大腸桿菌之殺菌能力探討。國立臺灣海洋大學食品科學系,碩士論文,基隆。
Abadias, M., Usall, J., Oliveira, M., Alegre, I., & Viñas, I. (2008). Efficacy of neutral electrolyzed water (NEW) for reducing microbial contamination on minimally-processed vegetables. International Journal of Food Microbiology, 123(1-2), 151-158.
Abrishami, S. H., Tall, B. D., Bruursema, T. J., Epsten, P. S., & Shah, D .B. (1994). Bacterial adherence and viability on cutting board surfaces. Journal of Food Safety, 14(2), 153-172.
Albrich, J. M., McCarthy, C. A., & Hurst, J. K. (1981). Biological reactivity of hypochlorous acid: implications for microbicidal mechanisms of leukocyte myeloperoxidase. Proceedings of the National Academy of Sciences, 78(1), 210-214.
Annonymous (1997) Principle of formation electrolytic water. Hoshizak Electric Co., Ltd., Sakae, Tokyo, Aiohi , Japan,11-1-99.
Barrette Jr, W. C., Hannum, D. M., Wheeler, W. D., & Hurst, J. K. (1989). General mechanism for the bacterial toxicity of hypochlorous acid: abolition of ATP production. Biochemistry, 28(23), 9172-9178.
Bean, N. H., Griffin, P. M., Goulding, J. S., & Ivey, C. B. (1990). Foodborne disease outbreaks, 5 year summary. 1983-1978. Journal of Food Protection, 53, 700-728.
Bongiovanni, C. M. (2006). Superoxidized water improves wound care outcomes in diabetic patients. Diabetic Microvasc Complications Today, 3, 11-14.
Bryan, F. L. (1998). Risks of practices, procedures and processes that lead to outbreaks of foodborne diseases. Journal. Food Protection, 51, 663-673.
Cao, W., Zhang, C., & Li, B. (2012). Effect of spraying subacidic electrolyzed water on buckwheat sprouts growth. Transactions of the Chinese Society of Agricultural Engineering, 28(9), 159-164.
Cao, W., Zhu, Z. W., Shi, Z. X., Wang, C. Y., & Li, B. M. (2009). Efficiency of slightly acidic electrolyzed water for inactivation of Salmonella enteritidis and its contaminated shell eggs. International Journal of Food Microbiology, 130(2), 88-93.
Chai, T. J. & Pace, J. (1994). Vibrio parahaemolyticus. In Hui, Y H., Gorham J. R., Murrell K. D. and Cliver D. O. (Eds.), Foodborne Disease Handbook-Disease Caused by Bacteria. New York: Marcel Dekker, Inc., pp.395-425.
De Oliveira Filho, P. R. C., Netto, F. M., Ramos, K. K., Trindade, M. A., & Viegas, E. M. M. (2010). Elaboration of sausage using minced fish of nile tilapia filleting waste. Brazilian Archives of Biology and Technology, 53(6), 1383-1391.
Ding, T., Ge, Z., Shi, J., Xu, Y. T., Jones, C. L., & Liu, D. H. (2015). Impact of slightly acidic electrolyzed water (SAEW) and ultrasound on microbial loads and quality of fresh fruits. LWT-food Science and Technology, 60(2), 1195-1199.
Ding, T., Xuan, X.T., Liu, D.H., Ye, X.Q., Shi, J., Warriner, K., Xue, S., & Jones, C.L. (2015). Electrolyzed water generated using a circulating reactor. International Journal of Food Engineering, 11(1), 79-84.
Fujino, T., Miwatani, T., Takeda, Y. & Tomaru, A. (1969). A thermolabile direct hemolysin of Vibrio Parahaemolyticus. Biken Journal, 12, 145-148.
Gopal, S., Otta, S. K., Kumar, S., Karunasagar, I., Nishibuchi, M., & Karunasagar, I. (2005). The occurrence of Vibrio species in tropical shrimp culture environments; implications for food safety. International journal of food microbiology, 102(2), 151-159.
Guentzel, J. L., Lam, K. L., Callan, M. A., Emmons, S. A., & Dunham, V. L. (2008). Reduction of bacteria on spinach, lettuce, and surfaces in food service areas using neutral electrolyzed oxidizing water. Food Microbiology, 25(1), 36-41.
Harrison, J. E., & Schultz, J. (1976). Studies on the chlorinating activity of myeloperoxidase. Journal of Biological Chemistry, 251(5), 1371-1374.
Hernandez-Milian, A., & Payeras-Cifre, A. (2014). What is new in listeriosis?. BioMed Research International, 2014, 358051.
Hurst, J. K., Barrette, W. C., Michel, B. R., & Rosen, H. (1991). Hypochlorous acid and myeloperoxidase‐catalyzed oxidation of iron‐slfur clusters in bacterial respiratory dehydrogenases. The FEBS Journal, 202(3), 1275-1282.
Issa-Zacharia, A., Kamitani, Y., Miwa, N., Muhimbula, H., & Iwasaki, K. (2011). Application of slightly acidic electrolyzed water as a potential non-thermal food sanitizer for decontamination of fresh ready-to-eat vegetables and sprouts. Food Control, 22(3-4), 601-607.
Kaneko, T., & Colwell, R. R. (1975). Adsorption of Vibrio parahaemolyticus onto chitin and copepods. Applied Microbiology, 29(2), 269-274.
Kim, J. M., Hung, T. S., Marshall, M. R., & Wei, C. I. (1999). Chlorine dioxide treatment of seafoods to reduce bacterial loads. Journal of Food Science, 64,1089-1093.
Kiura, H., San, K., Morimatsu, S., Nakano, T., Morita, C., Yamaguchi, M., Maeda, T. & Katsuoka, Y. (2002). Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration. Journal of Microbiological Methods, 49, 285-293.
Knabel, S. J. (1995). Foodborne illness: role of home food handling practices. Food Technology. 49(4), 119-131.
Koide, S., Takeda, J. I., Shi, J., Shono, H., & Atungulu, G. G. (2009). Disinfection efficacy of slightly acidic electrolyzed water on fresh cut cabbage. Food Control, 20(3), 294-297.
Len, S. V., Hung, Y. C., Erickson, M., & Kim, C. (2000). Ultraviolet. spectrophotometric characterization and bactericidal properties of electrolyzed oxidizing water as influenced by amperage and pH. J. Food Protection, 63(11), 1532-1537.
Li, X., Hao, J., Liu, X., Liu, H., Ning, Y., Cheng, R., Tan, B., & Jia, Y. (2015). Effect of the treatment by slightly acidic electrolyzed water on the accumulation of γ-aminobutyric acid in germinated brown millet. Food Chemistry, 186, 249-255.
Majowicz, S. E., Musto, J., Scallan, E., Angulo, F. J., Kirk, M., O'brien, S. J., T.F. Jones, A. Fazil, R.M. Hoekstra, & International Collaboration on Enteric Disease “Burden of Illness” Studies. (2010). The global burden of nontyphoidal Salmonella gastroenteritis. Clinical Infectious Diseases, 50(6), 882-889.
Matches, J. R. & Liston, J. (1972a) Effects of incubation temperature on the salt tolerance of Salmonella. Journal of Milk and Food Technology. 35(1), 39-44.
Matches, J. R. & Liston, J. (1972b) Effect of pH on low temperature growth of Salmonella. Journal of Milk and Food Technology. 35(1), 49-52.
McCarter, L. L., & Silverman, M. (1987). Phosphate regulation of gene expression in Vibrio parahaemolyticus. Journal of Bacteriology, 169(8), 3441-3449.
Ono, T., Miyake, M., & Yamashita, K. (2006). Studies on the disinfection of hatching eggs by spraying weak acid hypochlorous water mist. Journal of Antibacterial and Antifungal Agents, 34(8), 465-469.
Oomori, T., Oka, T., & Arata, Y. (2000). The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. The Japan Society for Analytical Chemical,16: 365-369.
Orsi, R. H., den Bakker, H. C., & Wiedmann, M. (2011). Listeria monocytogenes lineages: genomics, evolution, ecology, and phenotypic characteristics. International Journal of Medical Microbiology, 301(2), 79-96.
Rocourt, J., & Bille, J. (1997). Foodborne listeriosis. World Health Statistics Quarterly. Rapport Trimestriel de Statistiques Sanitaires Mondiales, 50(1-2), 67-73.
Schlech III, W. F., & Acheson, D. (2000). Foodborne listeriosis. Clinical Infectious Diseases, 31(3), 770-775.
Selkon, J. B., Babbt, J. R., & Morris, R. (1999). Evaluation of the antimicrobial activity of a new super-oxidized water, Sterilox®, for the disinfection of endoscopes. Journal of Hospital Infection, 41(1), 59-70.
Shin, J. H., Chang, S. & Kang, D. H. (2004) Application of antimicrobial ice for reduction of foodborne pathogens (Escherichia coli O157:H7, Salmonella Typhimurium, Listeria monocytogenes) on the surface of fish. Journal of Applied Microbiology. 97, 916-922.
Suh, D. K & Song, J. C. (2006) Analysis of Salmonella enterica serotype Enteritidis isolated from human and chickens by repetitive sequence-PCR fingerprinting, antibiotic resistance and plasmid profiles. The Journal of Veterinary Science, 7, 37-41.
Suresh, A. V., & Lin, C. K. (1992). Tilapia culture in saline waters: a review. Aquaculture, 106(3-4), 201-226.
Suzuki, K., Nakamura, T., Kokubo, S., & Tomita, M. (2005). The disinfectant effect of slightly acidic electrolyzed water prepared with hydrochloric acid as a raw material for lettuce. Journal of Antibacterial and Antifungal Agents, 33(11), 589-597.
Swaminathan, B., & Gerner-Smidt, P. (2007). The epidemiology of human listeriosis. Microbes and Infection, 9(10), 1236-1243.
Thomas, E. L. (1979). Myeloperoxidase, hydrogen peroxide, chloride antimicrobial system: nitrogen-chlorine derivatives of bacterial components in bactericidal action against Escherichia coli. Infection and Immunity, 23(2), 522-531.
Venkobachar, C., Iyengar, L., & Rao, A. P. (1975). Mechanism of disinfection. Water Research, 9(1), 119-124.
Walker, S. J., Archer, P., & Banks, J. G. (1990). Growth of Listeria monocytogenes at refrigeration temperatures. Journal of Applied Microbiology, 68(2), 157-162.
Wong, H. C., Ting, S. H., & Shieh, W. R. (1992). Incidence of toxigenic vibrios in foods available in Taiwan. Journal of Applied Microbiology, 73(3), 197-202.
Zhang, C., Cao, W., Hung, Y. C., & Li, B. (2016). Disinfection effect of slightly acidic electrolyzed water on celery and cilantro. Food Control, 69, 147-152.
Zhao, P. T., Zhao, M. P., Doyle, M. P., Rubino, J. R. & Meng, J. (1998) Development of a model for evaluation of microbial cress-contamination in the kitchen. Journal of Food Protection, 61:960-963.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊