跳到主要內容

臺灣博碩士論文加值系統

(216.73.216.54) 您好!臺灣時間:2026/01/09 05:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林鴻奇
研究生(外文):Hung-chi Lin
論文名稱:直流馬達之異常振動訊號檢測及辨識
論文名稱(外文):Detection and Recognition of Abnormal Vibration Signals of DC Motors
指導教授:李俊耀
指導教授(外文):Chun-Yao Lee
學位類別:碩士
校院名稱:中原大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2010
畢業學年度:98
語文別:中文
論文頁數:118
中文關鍵詞:倒傳遞類神經網路小波轉換希爾伯-黃轉換
外文關鍵詞:Back-propagation AlgorithmWavelet TransformHilbert-Huang Transform
相關次數:
  • 被引用被引用:1
  • 點閱點閱:747
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
由於馬達設備無預警之異常,往往將導致生產單位之停機損失。為預先瞭解馬達於運轉所產生警示訊號,本論文將以直流馬達作為研究對象,分析其運轉中所產生之振動訊號,以期瞭解馬達之運轉狀況,有效降低停機事故發生機率。
首先,為比較希爾伯-黃轉換與小波轉換於時間及頻譜之清晰程度,本研究以模擬訊號作為比較對象,獲得利用希爾伯-黃轉換於訊號清晰度上,優於利用小波轉換之初步結果。
其次,本研究為瞭解希爾伯-黃轉換及小波轉換於濾除突波及雜訊之適用性,分別提出並比較六種濾除策略;而模擬結果顯示,其中兩種策略(先以小波轉換於突波濾除,後以希爾伯-黃轉換於雜訊濾除;及先以經驗模態結合倒傳遞類神經網路於突波濾除,後以希爾伯-黃轉換於雜訊濾除)於突波及雜訊濾除上確具成效。
再者,以實際量測直流馬達之振動訊號作為分析對象,在完成突波及雜訊濾除程序後,則爰用前述對於希爾伯-黃轉換於頻率及時間清晰度優於小波轉換之初步結果,本研究採用希爾伯-黃轉換辨識馬達異常樣本;其分析結果顯示,利用希爾伯-黃轉換頻譜分析確可於希爾伯頻譜上可找出異常之特徵,並判斷出異常種類。
最後,為利用自動辨識方法取代前述之視覺化之功能,本研究分別利用經驗模態及多重解析度分法,分解異常訊號,而後利用特徵擷取結果進行倒傳遞類神經網路分類,將可達到自動辨識之目的。另外,為瞭解上述經驗模態及多重解析度應用於自動辨識之成效差異,本研究以實際直流馬達振動訊號作為分解對象,其分析解果顯示,結合多重解析度分解及倒傳遞類神經網路之程序,較可達到自動辨識之良好成效。



The unexpected malfunction in terms of motor equipment usually results in down-time cost. To understand the breakdown signal in the running process, the vibration signal produced from DC motor is employed to analyze the status of the DC motor in order to decrease the down-time probability.
First, the simulated signals based on Hilbert-Huang transform (HHT) and Wavelet Transform (WT) are applied to compare the resolutions of time-frequency contour. The result has shown that the resolution based on HHT is better than that of WT.
Second, to understand the performances of the spike and noise filtering, the six filtering strategies are compared. The simulated results have shown that the two strategies are effective to filter spike and noise. That is, for the first strategy, the spike filtering is applied by WT and then the noise filtering is applied by HHT, and for the second strategy, the Empirical Mode Decomposition (EMD) and Back-propagation (BP) algorithm are combined to filter spike and then the HHT is applied to filter noise.
Third, the actual measured vibration signal of the DC motor is employed to filter spike and noise, and subsequently, HHT is applied to recognize the malfunction status of DC motor due to the better resolution of HHT.
Finally, the method of automatic recognition is employed to substitute the aforementioned visualized inspection. The EMD and Wavelet Multiresolution Analysis (MRA) are applied to decompose breakdown signal and the extracted characteristics are employed to produce the BPNN feature vector for categorization. In addition, the actual vibration signals for DC motor are employed to implemented EMD and MRA and to compare effectiveness of the EMD mentioned above and MRA for automatic recognition. The results have shown that the combination of MRA and BPNN can achieve a better automatic recognition result.



中文摘要 I
英文摘要 II
目 錄 III
圖目錄 VII
表目錄 XII
第一章 緒 論 1
1.1研究動機與背景 1
1.2文獻回顧 2
1.3本論文之貢獻 2
1.4章節概要 3
第二章 訊號轉換分析與類神經網路理論 5
2.1前言 5
2.2小波轉換 5
2.2.1連續小波轉換 6
2.2.2離散小波轉換 7
2.2.3多重解析分析 7
2.3希爾伯-黃轉換 11
2.3.1經驗模態分解 11
2.3.2希爾伯轉換 13
2.4類神經網路 14
2.4.1類神經網路架構 14
2.4.2倒傳遞網路 17
2.5小波轉換及希爾伯-黃轉換分析及比較 18
2.6本章結論 19
第三章 突波及雜訊濾除模型 20
3.1前言 20
3.2突波濾除方式 22
3.2.1希爾伯-黃轉換於突波之濾除 22
3.2.2小波轉換於突波之濾除 24
3.2.3經驗模態及倒傳遞類神經網路於突波之濾除 29
3.3雜訊濾除方式 35
3.3.1小波轉換於雜訊之濾除 35
3.3.2希爾伯-黃轉換於雜訊之濾除 40
3.4濾除策略結果討論 45
3.5本章結論 50
第四章 應用希爾伯-黃轉換於直流馬達之異常辨識 51
4.1前言 51
4.2試驗設備及異常種類 51
4.2.1試驗設備 51
4.2.2異常種類 52
4.3希爾伯-黃轉換分析異常 60
4.3.1單一異常樣本辨識 60
4.3.2複合異常樣本辨識 70
4.4本章結論 84
第五章 直流馬達異常自動辨識之探討 85
5.1前言 85
5.2數據擷取方法 85
5.2.1經驗模態分解模型 86
5.2.2多重解析度分解模型 87
5.3自動辨識結果及比較(單一異常樣本) 88
5.3.1經驗模態分解於自動辨識 91
5.3.2多重解析度分解於自動辨識 94
5.3.3討論與比較 98
5.4自動辨識結果(複合異常樣本) 98
5.5本章結論 100
第六章 結論及未來展望 101
6.1結論 101
6.2未來展望 101
參考文獻 103


[1]趙安民,「馬達故障診斷之模糊類神經網路」,中原大學機械工程學系碩士論文,民國93年。
[2]林宜生,「類小腦神經網路於機電設備故障診斷之應用」,勤益科技大學資訊與電能科技研究所碩士論文,民國96年。
[3]G. S. Maruthi. and K. P. Vittal “Electrical fault detection in three phase squirrel cage induction motor by vibration analysis using MEMS accelerometer,” in Proceeding of IEEE conference on Power Electronics and Drives Systems, Nov. 2006, pp. 838-843.
[4]H. Ocak, and K. A. Loparo “Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data,” Mechanical Systems and Signal Processing, pp. 515–533, May 2004.
[5]H. Zhang, K. Bradley, and P. Zanchetta “A None-intrusive Load and Efficiency Evaluation Method for In-Service Motors Using Vibration Tests with an Accelerometer,” in Proceeding of IEEE conference on Industry Applications Society Annual Meeting, Oct. 2008, pp 1-6.
[6]L. Satish “Short-time Fourier and wavelet transform for fault detection in power transformers during impulse tests,” in IEE Proceeding Science, Measurement and Technology, vol. 145, no. 2, Mar. 1998, pp. 77-84.
[7]W. Yang, P. J. Tavner, M. R. Wilkinson, “Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train,” IET Renewable Power Generation, vol. 3, no. 1, pp. 1-11, Mar. 2009.
[8]陳崗熒,「以HHT 時頻分析法剖析赤道區電離層F 層電漿空腔結構」,中央大學太空科學研究所博士論文,民國90年。
[9]林鴻志,「雷達訊號之時頻分析」,中央大學電機工程研究所碩士論文,民國95年。
[10]R. Yan, and R. X. Gao, Senior Member, “ Hilbert–Huang Transform-Based Vibration Signal Analysis for Machine Health Monitoring,” IEEE Transactions on Instrumentation and measurement, vol. 55, no. 6, pp. 2320-2329, Dec. 2006.
[11]魏大韋,「應用小波理論與迴歸法修正比流器飽和電流之電驛晶片設計」,中原大學電機工程學系碩士論文,民國97年。
[12]H. B. He, and Janusz A. Starzyk, “A Self-Organizing Learning Array System for Power Quality Classification Based on Wavelet Transform,” IEEE Transactions on Power Delivery, vol. 21, no. 1, pp. 286-295, Jan. 2006.
[13]吳榮慶,「頻譜技術分析的改進及在電機監視的應用」,中山大學電機工程學系博士論文,民國90年。
[14]A. Roy, C.-H. Wen, J. F. Doherty, and J. D. Mathews, “ Signal Feature Extraction From Microbarograph Observations Using the Hilbert–Huang Transform,” IEEE Transaction on Geoscience and Remote Sensing, vol. 46, no. 5, May 2008.
[15]H. Ocak,and K. A. Loparo, “Estimation of the running speed and bearing defect frequencies of an induction motor from vibration data,” Mechanical Systems and Signal Processing, vol. 18, pp. 515-533, May 2004.
[16]M. Kawada, and K. Yamada “Visualization of Vibration Phenomena on Model Turbine Rotor Using Cross-Correlation Method Based on In-Place Fast Haar Wavelet Transform, ” in Proceeding of IEEE Power and Energy Society General Meeting, July 2008, pp 1-6.
[17]A. Grossman , and J. Morlet, “Decompositions of Hardy Functions into Square Integrable Wavelet of Constant Shape,” Society for Industrial and Applied Mathematics Journal of Mathematical Analysis, vol. 15, no. 4, pp. 723-736, Jul. 1984.
[18]N. E. Huang and S. R. Long, “The Ages of Large Amplitude Coastal Seiches on the Caribbean Coast of Puerto Rico,” Journal of Physical Oceanography, vol. 30, pp.2001-2012, Aug. 2000.
[19]N. E. Huang, Z. Shen, and S. R. Long, “A new view of nonlinear water waves: The Hilbert spectrum,” Annual Review of Fluid Mechanics, vol. 31, pp. 417-457, Jan. 1999.
[20]X. D. Wang, B. Q. Li, Z. W. Liu, Harry T. Roman, Onofrio L. Russo, Ken K. Chin, and Kenneth R. Farmer, ”Analysis of Partial Discharge Signal Using the Hilbert-Huang Transform,” IEEE Transactions on Power Delivery, vol. 21, no. 3, pp. 1063-1067, July 2006.
[21]Y. G. Deng, W. Wang, C. C. Qian, Z. Wang, and D. J. Dai, ”Boundary-processing-technique in EMD method and Hilbert transform,” Chinese Science Bulletin, vol. 46, no. 1, Jan. 2001.
[22]汪惠健,類神經網路設計,新加坡商湯姆生亞洲私人有限公司,民國94年。
[23]顧力栩,沈晉惠,陳彥升,吳文濱,人工智慧:智慧型系統導論,全華圖書股份有限公司,民國96年。
[24]賴佳良,「模鑄式比流器之局部放電音射信號辨識」,台灣科技大學電機工程系碩士論文,民國96年。
[25]Y. P. Kuo, C. Y. Lee, J. W. Shiu, H. C. Chang, “Development of Top-down Experimental Procedure for Partial Discharge Recognition of Current Transformers,” World Scientific and Engineering Academy and Society Transactions on Systems, vol. 4, pp. 1233-1241, 2005.
[26]C. J. Mozina, “Digital defense,” IEEE Industry Applications Magazine, vol. 16, no. 4, pp. 24-29, 2010.
[27]J. A. Farooq, A. Djerdir, A. Miraoui, “Analytical Modeling Approach to Detect Magnet Defects in Permanent-Magnet Brushless Motors,” IEEE Transactions on Magnetics, vol. 46, no. 7, pp. 4599-4604, 2008.

電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top